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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 4276

AN APPROXIMATE ANALYTICAL METHCD FOR STUDYING ENTRY
INTO PLANETARY ATMOSPHERES

By Dean R. Chapman

SUMMARY

The pair of motion equations for entry into an exponential planetary
atmosphere is reduced to a single, ordinary, nonlinear differential equa-
tion of second order by disregarding two relatively small terms and by
introducing a certain mathematical transformation. The reduced equation
includes various terms, certain of which represent the gravity force, the
centrifugal acceleration, and the 1lift force. If these particular terms
are disregarded, the differential equation is linear and ylelds precisely
the solution of Allen and Eggers applicable to ballistic entry at rela-
tively steep angles of descent. If all the other terms in the basic
equation are disregarded (corresponding to negligible vertical accelera-
tion and negligible vertical component of drag force), the resulting
truncated differential equation yields the solution of Séanger for equi-
librium flight of glide vehicles with relatively large lift-drag ratios.

A number of solutions for lifting and nonlifting vehicles entering
at various initial angles also have been obtained from the complete non-
linear equation., These solutions are universal in the sense that a single
solution determines the motion and heating of a vehicle of arbitrary
weight, dimensions, and shape entering an arbitrary planetary atmosphere.
One solution is required for each lift-drag ratio. These solutions are
used to study the deceleratlion, heating rate, and total heat absorbed for
entry into Venus, Earth, Mars, and Jupiter. From the equations developed
for heating rates, and from available information on human tolerance
limits to acceleration stress, approximate conditions for minimizing the
aerodynamic heating of a trimmed vehicle with constant lift-drag ratio
are established for several types of manned entry. A brief study is
included of the process of atmosphere braking for slowing a vehicle from
near escape velocity to near satellite velocity.

INTRODUCTTON

One of the many challenging problems connected with space flight
occurs during the terminal phase of operation when a vehicle at near
orbital velocity enters the earth's atmosphere or the atmosphere of
another planet. Some important aspects of this problem are the possibly
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severe decelerations for human occupants, the intense aerodynamic heating,
and the tactical aspect of having satisfactory control over both the time
and location of landing. The problem is made more interesting by inter-
relationships between these aspects which require, as always, keen under-
standing in order to make the best design compromises. For example, the
lowest heating rates and smallest decelerations are obtained with very
shallow entry paths, such as would be obtained by letting an orbit
gradually decay; but the tactical aspects of fixing the time and location
of a vehicle upon landing are most difficult with these very shallow
re-entries. Also, the total heat absorbed during descent is greater for
shallow entries than for steep ones. If descent at a steeper angle 1is
induced by deflecting the orbit, such as by means of a retrorocket, then
the total heat absorbed for laminar flow is reduced substantially, and
the time and location aspects of recovery are improved, but both the
deceleration and the heating rate are increased. In order to devise an
efficient method of entry for a given application, it 1is highly desirable
that a designer have available relatively simple equations for computing
how each variable at his disposal affects the entry trajectory, the
deceleration, and the aerodynamic heating.

For several special types of entry, analytical theories are available
which provide simple equations showing clearly how each variable affects
the motion and aerodynamic heating. In the case of balligtic-type entry
without 1ift at sufficiently steep angles that the gravity and centrifugal
forces can be disregarded, the analysis of Allen and Eggers (ref. 1)
provides such equations. In the case of smoothly gliding-type entry at
zerc initial angle with a sufficiently large lift-drag ratio that the
vertical acceleration and the vertical component of drag force can be
disregarded, the analysis originally given by Sanger (refs. 2 and 3) would
be applicable. In the case of skipping vehicles entering at sufficiently
steep angles and with a sufficiently large lift-drag ratio that the
gravity and centrifugal forces can be disregarded, the analysis of Eggers,
Allen, and Neice (ref. 4) would apply. For more general types of entry,
though, where the gravity force, centrifugal force, lift force, vertical
acceleration, and vertical component of drag are all of importance, these
existing analyses would not apply. Such would be the case, for example,
for the entry of a satellite with a small lift-drag ratio, or for the
entry of any orbiting vehicle starting with a very small initial angle.

As a result, present understanding of the relatively shallow entries -
which are of special interest to manned space flight -~ is based primarily
on numerical calculations made with computing machines in connection with
relatively specific vehicles (see, e.g., refs. 5, 6, and T).

The objective of the present report is to develop an approximate
analytical solution to the motion equations which is usable for engineer-
ing calculations and which is applicable to an arbitrary planetary atmos-
phere, to a lifting or nonlifting vehicle, and to entries along either
shallow or steep descents. Such a solution could be applied to a fairly
broad variety of vehicles, such as skip, glide, satellite, ballistic, or
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escape vehicles undergoing the process of atmosphere braking. An addi-
tional objective is to develop a method applicable to composite types of
entry, such as entering initially with zero lift, and then suddenly chang-
ing the 1ift and/or drag at any number of points during the descent.

During the preparation of this report an interesting report by Gazley
(ref. 8) became available in which he considers the entry of a nonlifting
satellite into a planetary atmosphere from a decaying orbit. He obtains
an approximate analytic solution by making an arbitrary assumption about
the relationship between velocity and angle of descent which is not made
in the present report. As a result, his end equations for this particular
type of entry are quantitatively different, though qualitatively similar
to those of the present report, as discussed briefly later.

NOTATION
a resultant deceleration
A reference area for drag and 1lift, sq ft
C dimensional constant in heat-transfer equations

(17,000 Btu £t-3/2sec™! for numerical calculations of this report)

Cp drag coefficient, 2
L ov@a
7 Poo
C;  1lift coefficient, i
% o
3 PV A
D drag force, 1lb
g gravitational acceleration, ft sec™@

g gravitational conversion constant, 32.2 ft sec™@

ky ratio of local heat flux to that at a stagnation point, éL
S

ko average value of heat flux relative to stagnation point value,

1 [a
- — d8
S dg

1 characteristic length of vehicle, ft
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1lift force, 1b
mass of vehicle, slugs

mean molecular weight of planetary atmosphere (consistent units
with gas constant and g)

Prandtl number

convective heat-transfer rate per unit area, Btu/sq ft sec

total convective heat absorbed,klya dt dsS, Btu

dimensionless function proportional to heating rate (ES/%IZ for
laminar flow)

dimensionless function proportional to total heat absorbed
<J[£3/2Z-1/2cos'2¢ dﬁ)
distance from planet center, ft

universal gas constant, or radius of curvature of vehicle surface
in feet

payl
Reynolds number,

00

circumferential distance traveled, ft

surface area wetted by boundary layer, sq ft

time, sec

temperature (various units employed)

circumferential velocity component normal to radius vector, ft/sec

circular orbital velocity, Ner, ft/sec

ratio, 3

Ue

upper limit for range and total heat absorbed (see eqs. (28) and
(390))

altitude, £t



NACA TN 4276 5

vertical velocity component (along direction of radius vector), ft/sec
resultant velocity, Ju? + V¢
weight of vehicle at earth's surface, mg., 1b

dimensionless function of u determined by equation (21) and
appropriate boundary conditions

atmospheric density decay parameter, ft~1

ratio of specific heats behind bow wave

angle in polar coordinates

coefficient of viscosity, slug ft~tsec™?

density, slug ft=@

flight-path angle relative to local horizontal direction; positive
for climbing flight, negative for descent

Subscripts

sea level

free stream
stagnation point
initial condition

break where W is discontinuously changed

Cph

relative to earth
Superscripts
differentiation with respect to U

mean value for exponential approximation to atmosphere density-
altitude relationship, or dimensionless quantity



6 NACA TN 4276

ANALYSTS

Assumptions and Approximations

The problem analyzed concerns that portion of the descent of a
vehicle into a planetary atmosphere wherein the decelerations and the
convective aerodynamic heating are dominant. Three assumptions made at
the outset are:

(i) Atmosphere and planet are spherically symmetric.
(ii) Atmosphere density pg varies exponentially with altitude.

(iii) Peripheral velocity of planet is negligible compared to the
velocity of the entering vehicle.

Assumption (i) is reasonable for those planets which have only small
equatorial bulges (such as Venus, Earth, and Mars), inasmuch as the severe
aerodynamic heating and decelerations occur over a length of flight path
which is small compared to the planet's mean radius (the order of

one tenth the planet radius for nonlifting bodies). The assumption of
spherical symmetry, however, would not be as reasonable for planets with
relatively large equatorial bulges, such as Jupiter and Saturn. As noted
later, this assumption of spherical symmetry can introduce some inaccuracy
if the descent is nearly along a line of longitude and if the vehicle also
happens to have a relatively large lift-drag ratio. For large lift-drag
ratios the important deceleration and heating portions of the descent can
be prolonged over a distance comparable to the planet's radius; hence,

the nonspherical nature of the atmosphere could be important in such
cases.

Assumption (ii), of an exponential atmosphere, 1is based upon the
simple kinetic theory of an isothermal gas in a uniform gravitational
field. This theory yields the well-known exponential approximation for
atmospheres (see ref. 9, ch. III, for example)

-By (1)

Mg®
it
o

where

(2)

w
1]
Bl

gpd where M 1is the mean molecular weight of the planet's atmosphere,
T the mean temperature, R the universal gas constant, and g the local
acceleration due to gravity. It is to be noted that P, represents the
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intercept of the straight line which best fits a curve of log p versus
altitude, and is not the same as the true 'sea level density py. From
data such as presented in references 10 and 11, approximate mean values
of several quantities of interest for various planets are as follows
(the subscript e designates a value relative to the earth):

M T, |a-1 Tamy
Planet Gases ’ ’ ft r
ne Te | Beo He em mol=1| Ok B ~» (B )e
Venus 0.9710.87|C0=,N2 | 0.8 4o 270 2x10% 1.0
Earth 1.0 [1.0 | N2,02 1.0 29 2kol2.35x10% 1.0
Mars .53 .38|N2,Cc02 | 1.0 30 220 6x10* b7
Jupiter|11.0 |2.63|H2,CHse | .5 3 170 6x10% 2.0

The exponential approximation for the earth (with Po = 0.0027 slug ft~3)
is compared in figure 1 with the relatively recent (1956) ARDC model of

the atmosphere. It is evident that a single value for B appears to be

a reasonable approximation at altitudes below about 400,000 feet (80 miles,
roughly). In most cases peak decelerations and maximum aerodynamic heating
occur well below this altitude. Moreover, the region of most important
heating and deteleration for a given vehicle occurs only over a relatively
thin strip of altitude (very roughly over a 70,000-foot strip across which
the density changes by about a factor of 20). Since the analysis which
follows enables the altitude of this important strip to be calculated
quickly for any given vehicle, the exponential decay parameter B in each
case could be selected, if desired, as corresponding to this particular
altitude rather than to the mean value tabulated sbove. A plot of the
dimensionless parameter «Br as a function of altitude is shown in fig-
ure 2 for the ARDC model atmosphere. In determining «Br consideration

is given only to the 70,000-foot region of air immediately above a given
altitude. The fluctuations in «Br for this standard atmosphere below
about 400,000 feet amount to the order of *10 percent from a mean value

of 30 and are attributed primarily to the variation in temperature with
altitude. Inasmuch as variations in temperature with season and with
latitude (see ref. 12, for example) can fluctuate the order of #*15 percent,

—-1/2 -
the parameter +/Br~T / can fluctuate about 47 percent. For most numer-
ical calculations in this report, a constant value «Br = 30 is used for

the earth's atmosphere corresponding to a mean atmospheric temperature of
2Lo° K (432° R).

Assumption (iii), that the peripheral velocity of the planet is
negligible compared to the velocity of the entering vehicle, would not
introduce significant errors for most descents into most planetary atmos-
pheres. For descents nearly along a line of longitude, the errors in heat
transi’er and deceleration would, of course, be negligible. The greatest
error would occur in an equatorial descent. As a measure of this error,
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we can take the ratio of the equatorial peripheral velocity up of the

planet to the circular satellite velocity uc. This ratio for several
planets is as follows:

up/uc
Venus 10.002
EBarth .06
Mars 07
Jupiter .29

Hence the error introduced by assuming a nonrotating atmosphere in the
case of near-equatorial descents would be negligible for Venus, appreci-
able though not large for Earth and Mars, but probably significant for
Jupiter.

In addition to these three physical assumptions, two mathematical
approximations are made in the development of the subsequent analysis in
order to effect major simplifications in the structure of the equations
of motion. They are mentioned here for convenlence:

() In a given inerement of time, the fractional change in distance
from the planet center, dr/r, is small compared to the fractional
change in velocity du/u; that is, |dr/r|-<<:|du/u|.

(b) For lifting vehicles, the flight-path angle ¢ relative to the
local horizontal direction is sufficiently small that the component
of 1ift in the horizontal direction is small compared to the drag;
that is, |(L/D)tan ¢|<< 1.

For nonlifting vehicles (e.g., ballistic entry), approximation (b)
is automatically satisfied; approximation (a) does not specifically
restrict the descent angle (0° to 90° can be analyzed for nonlifting
vehicles), but it does restrict the analysis to a portion of the cover=-all
trajectory below an upper altitude limit. Above some altitude dr/r
cannot be small compared to du/u, as is shown to be the case on mathe-
matical grounds in appendix A, Physically, this is clear from the law
of conservation of angular momentum which states that in the absence of
drag, d(mur) = 0, or dr/r = -du/u. Consequently, the present solution
would be reasonable at least below an altitude where drag has slowed down
s vehicle slightly to some point (A in sketch) where dr/r = 0.1 du/u.

Tt is shown in appendix B that this corresponds to the point where drag
has reduced the vehicle velocity by about 0.0l of the initial velocity.
Above this altitude (point A), orbit-type calculations cculd be applied.
A method for joining the present solution to Keplerian ellipses 1is
discussed in appendix B.

1This value may be a factor of ten higher due to the uncertainty in
the length of the Venus day.
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... Peak - - o ‘¥EOJCL—U
_ ) .hpoting SR A /;__-_______
Maximum - - 7\ LN ~— S
deceleration - - Arc of .-

. Ke.pl.e'riqn' ellipse

For lifting vehicles (e.g., skip or gliding entry) assumption (b)
clearly restricts the analysis to small angles of descent. Even if a
lifting vehicle starts entry horizontally, the angle of descent will
increase as the velocity is reduced (and as the centrifugal forces are
diminished) until (L/D)tan ¢ becomes unity in the terminal subsonic
gliding phase. Although the solution is not valid, strictly speaking,
when (L/D)tan|@| is comparable to unity, a reasonable over-all trajectory
would be obtained by stopping the present solution at the point where
~(L/D)tan ® = 1 (point B in above sketch), and considering that
-(L/D)tan ® = 1 thereafter. As sketched, peak heating and maximum decel-
eration occur well within the range (solid line) where the present solu-
tion applies.

The limitations resulting from approximations (a) and (b) are
examined in appendix A, where it is shown that for vehicles entering from
decaying satellite orbits, with or without positive 1ift, the errors
introduced are only the order of a few percent insofar as aerodynamic
heating and peak decelerations are concerned. Surprisingly small errors
result from approximation (b), even for very large L/D ratios, because,
in orbital decay or in a smooth glide, the larger the L/D the smaller
the angle ¢ at conditions near maximum heating and peak deceleration;
this keeps the product (L/D)tan ¢ small.

Various modes of entry and the portions of the trajectories of
satellite, ballistic, escape, glide, and skip vehicles to which the anal-
ysis applies are sketched in figure 3.
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Development of Differential Equation

Descent in a spherically symmetric atmosphere about a spherically
symmetric planet would occur in a meridian plane in the absence of lateral
forces. This confines the problem to one of two dimensions for which
polar coordinates (r, 8) are convenient. The velocity components are
(v, u), respectively, as sketched below.

D

Flight path

The vector acceleration in terms of the unit vectors er and eg for polar
coordinates is

> > (dv u® - [du , uv
A zep|— - — )+ €gl=+ —
T (dt - 6 <dt - (3)

where gr and €g are the unit vectors in the r and 6 directions,
respectively. The local flight-path angle @ (negative for descent) is

tan ¢ = % (%)

The vector aerodynamic force

¥ - (-mg+ L cos ¢ - D sin 9)er - (D cos ¢ + L sin 9)eg (5)
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must equal the mass m times the vector acceleration in the absence of
thrust-type forces. Hence, equations (3), (4), and (5) yield two com-
ponent equations of motion

_d_(—X:-H—_- _u_g-écos +Psin 6
Y e g ” o Q o 1% (6)
du L uv _ _ D L si
el <cos ¢ + £ sin é) (7)

It is noted that g and r are local values in these equations.

We will solve this system of equations by disregarding the term
uv/r in equation (7) (which, as will be evident shortly, is equivalent
to assumption (a) that Idr/r]<<:|du/u]). This restricts the solutions
to problems wherein ]uv/rf<<:|du/dtl, but the restriction is not serious
for the aerodynamic heating and deceleration aspects of entry. 1In the
case of orbital entry, for example, maximum deceleration and heating
occur at such small angles that uv/r is the order of 1 percent of du/dt
(see appendix A). An alternate view of what the approximation involves
can be seen as follows:

,uv dr dr
w = ar
rl__1ath_drl oy (8)
’du - du ,93
dt dt u

Consequently, the disregard of uv/r is precisely equivalent to approx-
imation (a) mentioned earlier; namely, that the percentage change in
distance from the planet center is small compared to the percentage change
in velocity. We will employ this approximation several times more in the
analysis. Inasmuch as du/u is relatively large only when the drag is
important, it is understandable why the basic approximation |dr/r|<<|du/u|
yields results applicable to regions of important deceleration and aero-
dynamic heating, but not to the outer regions of space where orbit-type
calculations (which do not neglect the acceleration term uv/r compared
to du/dt) are necessary to describe the motion of a vehicle. In these
outer regions, radiant heat dominates, while convective heating and
deceleration are very small.

By utilizing approximation (a) (inequality (8)), we have

du D L
X - " mcos e (? t 5 tan é) (9)
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so that, by introducing the drag coefficient, the exponential approximation
to the atmosphere, and approximation (b) (|(L/D)tan ¢ | << 1), and noting
that V = u/cos 0,

B8 2
Qu_ 2 a (10)
dt 5 m \ o5 @
CpA

We will select as an independent variable

— u u
T =— = 11
o = (11)

representing the ratio of horizontal velocity to the local circular
satellite velocity. The basic approximation (8) taken together with the
relation dg/g = -Edr/r resulting from Newton's gravitational law enables
us to disregard derivatives of both g and r relative to derivatives of
either u, or u; for example,

_a(Jer v _ au
=—T—@£ (12)

gle
c

By introduction of the drag coefficient, the motion equation (6) for an
exponential atmosphere becomes

- =2.-BYy
_}.ﬂ__iéfl— ﬁg.*_&)._c_]):kf_u_f—— sin _Ecos (]_3)
gdt g dt2 2 m cos2Q ?-3 P

In order to reduce the pair of motion equations (10) and (13) to a
single equation, we transform to a new dimensionless dependent variable
7 defined by

7 = ___EQ__ /E Te~PY (1k)
2

and employ U as the independent variable.? Thus, by differentiating
(z' = dz/du) and keeping in mind the basic approximation (8)

2Mhe guthor knows of no simple way to explain a priori why this coor-
dinate system Z(Q) should be introduced. It was discovered by trial and
error after trying various other transformed coordinate systems which did
not reduce the pair of motion equations to a single equation.

-



NACA TN L276 13

AR Po N¥P  py ¥
T o (m da
CpA
= -p2&ydt (15)
u dt du

We see from equations (10) and (12) that

u=_J-é—é uz (16)

at cos @

so that substitution into equation (15) and noting that
dy/dt = v = Tfgr tan ¢ yields

Z,_§=ﬁﬁi_ipd_y=ﬁsincp (17)
u 28 u dt .

Proceeding now by differentiation of v and sin @ from equation (17),
there results ?

1 dv Fd<ﬁsincp 1 gu/ ue" +ﬁ~/T3?sin2cpd_cp> (18)
= =

gat Ngat\ cos g/ Veg at \cos ) cos2g du

The term dw/dﬁ representing flight-path curvature can be expressed in
several ways in terms of the Z function by noting from equations (17)

and (12) that

. 9
a£_<zv i E) =E«/-_Brd_‘°%§_£
u

Alternate forms of
terms representing (19)
flight-path curvature

1_12" A +

clpa

=ﬁZ"-M sincpj

Consequently, we can substitute the first form of this equation, together
with equation (16) into equation (18) to obtain
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_éd_‘JE:_}‘_i_Z_Z:_EZ__ ﬁZ"+tan2q){ﬁ—d:<Z' -%>]} (18a)

8 4t® cosZgp du o]

We note from equations (14) and (17) that equation (13) can be written
in the form

Hence, by comparing this equation with equation (18a), and by observing
from the second form of equation (19) that

=az"-ﬁ.d__<z' -§>
du u,

the final equation for the Z function is obtained.

AN

ol

—2
- 4 /4dz Z 1-u - L
Q= | — - = - 54 = 3 =
du <dﬁ ;> Uz cos™ + Npr D cos"p = O (21)

In this equation, cos ¢ = JI - sinE@ can be expressed in terms of Z!
and 7 through equation (17)

JE; sin @ = Z' -

=N

(17)

Thus, the pair of motion equations has been reduced to a single, second-
order differential equation by using T as the independent variable and
7 as the dependent variable.3 For nonlifting vehicles (L/D = 0) the
equation is applicable to large angles of descent as well as small. For
lifting vehicles it is applicable for i(L/D)tan ®‘<Kil. In all cases 1t
is applicable when |ar/r|/|du/ul<<1l. We note from equations (4) and (16)
that

3Clearly, the same reduction would be achieved by using g(u) as the
independent variable and 7h(T) as the dependent variable, where g )
and h(U) are arbitrary functions.
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dr/r uv/r _-U sin ¢

du/u du/dt JAT 2

(22)

As noted in appendix A, the ratio ldr/r!/ldu/u| is less than 0.1 below
the altitude where drag has reduced the velocity by about 1 percent of the
initial velocity.

The nonlinearity of equation (21) is due to the term (1 -5°%)cost9/az,
which represents the effects of gravity and centrifugal forces in inducing
a curved flight path. It is noted that the basic equation is independent
of the physical characteristics Cps Wy A of the vehicle as well as

independent of the sea-level characteristics Eb and go. Aerodynamic 1lift
occurs only in the combined parsmeter JE? L/D. The equation has a singu-
larity at Z = O which must be handled analytically in numerical methods.
A method of solving this equation is discussed in appendix D.

It is instructive to consider the physical meaning of each of the
terms in the differential equation (21). Equations (19) and (20) help
in this regard.

=2
uz" - <Z' - E) = ;:u costp - NBr L cos®p  (21a)
u uwz D
— ——— N ~— S - —_— -4 _—_—
vertical  vertical component gravity minus 1ift force
acceleration of drag force centrifdgal force
(N Br sin 9)

By understanding the physical significance of the various terms one can

Judge, for example, what terms to consider in obtaining special approxi-
mate solutions.

Since the basic differential equation is of second order, we need
two initial conditions to complete the system. We take these at some
initial velocity uj, and write as generalized initial conditions

z(uy) = 24 z'(Wy) = 25!

IT the vehicle starts at s very high altitude where the density is negli-
gible compared to that near peak heating, then the definition (1)

8.CpA [T\ _
Zi = <ﬁ \/%) Ujpq (2&&)
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shows that 23 1is very small in such cases. For simplicity we take
Zi = O for entries starting at very high altitudes. The equation

7
721t =pr sin Py + ﬁl (2hb)
i

shows that 2Zi' would be equal to ~/Br sin @3 when Z2Zi = 0. As an
example, entry from a decaying satellite orbit (¢i & O and gi = 1 in the

stage of decay before appreciable aerodynamic heating begins), would be
represented by the initial conditions

23(1) = 0 23'(1) = 0 (25)

One universal 2 function would be required for each value of the
parameter «fBr L/D appearing in the differential egquation (21) .

By allowing Z5;' to take on values other than zero and allowing i

to be either less than or greater than unity, we can obtain the corre-
sponding 2 functions for ballistic, glide, skip, or escape vehicles
entering a planetary atmosphere from very high altitudes. By further
allowing Zi to be other than zero, corresponding 7 functions can be
obtained for entry starting from an initial altitude where the density
may not be negligible compared to that near peak heating. Before present-
ing some solutions to equation (21), though, it is advantageous to show
how the 2Z functions, once computed, can rapidly be used to determine a
number of useful quantities in practical calculations.

Summary of Some Useful Quantities Related to the 2 Function

From the Z functions, it is a relatively simple matter to obtain,
for example, the horizontal component of deceleration ag by using
equations (3), (12), and (16),

8,9:—9il=g~fa;uz (26)
dt cos @

or

=z 30 Uz for Earth, ¢ small

i
ol
71g

c

Strictly speaking, g and r are local values in the outer layers of the
atmosphere where the deceleration takes place. For Barth, however, these
are not significantly different from their respective surface-level
values. Local and surface values might be greatly different, though, for
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Planets such as Jupiter and Saturn which are believed to have a very deep
atmosphere. The equation for the angle of descent (9<O for descent) is,
from equation (17),

z' - (Z/9)

JBr

sin @

(27)

z' - (2/7)
30

for Earth

IR

The circumferential distance traveled between a point where the dimension-
less velocity is Ui and a point where it is Uz can be expressed in
terms of Z from equation (16),

Us Uy —
Jf u.ég aT - 1 Jf cos ¢ du (28)
4, du Jer JT, Z

s
Rl

or

m

St

uy
%; %S b/: for Earth, ¢ small (29)
vl

2

Inasmuch as the analysis is not valid in a very small neighborhood of

Z = O where u = Uj, but becomes valid after drag has reduced Q by less
than 1 percent (as shown in appendix B), we select an upper limit such as
up = 0.995 uj or u1; = 0.99 uj for the entry range. In a practical appli-
cation, this range would have to be joined to the range of the appropriate
Keplerian ellipse in order to obtain the total range. The corresponding
time elapsed is obtained also with the aid of equation (16)

u
ds 1 1 cos o dT
t=f_=_ __;Q__ (30)

Yo JRg Ju, W@

sec for Earth, ¢ small, g = &o

[1X]

n

-3

o
T
N el

|
{E

Another useful quantity is the density ratio, referred to the true sea-
level density (pg = 0.00238 slug ft~3), which comes from the defini-
tion (14) for 2
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Po 2 [B( B2
Po - Po j;<CDA u (3]‘8‘)

or

-5 -
30 Po_ 3.7 <_é-“%> Zx 10 for Earth, —— in 1b £t™2
JBr Po IR Cph

The left side of this last equation is a function only of the altitude
for a given atmosphere CJE? for the ARDC model atmosphere is shown in
fig. 2), so that it provides for a given Z(i) function the altitude-
velocity relationship for any model atmosphere. The density ratio
referred to the effective sea-level density (Eb = 0.0027) which best fits
the p(y) curve is

e-By - Eﬁ = 2 ﬁ o é (31p)
B, Po VT \Cp4/ T
W Z -5 W -2
=32 (=)= x 10 - JBr =
3 <§DA = X for Earth, oA in 1b ft 5, NBr = 30

The dynamic pressure is

1 2 mg uz
— \'A r 2
> P CDAQB po— (32)

1

30 W2 - for Earth, —— in 1b £t°2, ¢ small
CDA ? CDA ?

and the free-stream Reynolds number per unit length is proporticnal to
Z (eq. 14))

Reoo= Voo _ 2\/gB m g (33)
1 Mo Lcos © \CphA

e

W W . -2
100 { =—— ) 2 for earth small, —— in 1b ft
7 (CD A a J> (‘P 2 CD A n
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The viscosity of air at the mean atmospheric temperature T = 432° R is
employed to cbtain the constant in this last equation which is valid only
for the earth's atmosphere.

It is interesting that the Reynolds numbers involved during entry
from a decaying satellite orbit are relatively small. Near peak heating,
Tor example, we will see subsequently that the value of Z ranges from
about 0.17 to 0.015, for L/D ratios between O and 1, so the correspond-
ing Reynolds numbers are of the order of lOOO(W/CDA) to lOO(W/CDA) per
foot. These are sufficiently small for one to be optimistic about the
practical possibilities of maintaining laminar flow for shallow entry
from a satellite orbit. For steep entries, as for ballistic vehicles,
the Z function is larger, and hence the corresponding Reynolds numbers
are larger. Curves illustrating this are presented later.

Fairly simple expressions also can be obtained for the aerodynamic
heating rate per unit area (q) and the total heat absorbed per unit area
Q/S. Following the analysis of Lees (ref. 13), we will consider the
heating rate at any point on a body to be a certain fraction

Ky = g (34)

of the heating rate qg at a stagnation point of radius of curvature R.

The heating rate in hypersonic flow at a stagnation point, can be
expressed as

m
Q> Btu ft™“sec”? (35)

n —
4. = C Eﬁ u
S :;R Po/ \cos

where the constants C, n, and m depend on the type of boundary-layer
flow. For laminar flow we have n = 1/2 and from the several references
listed (with po being the true sea-level density)

Reference C m Remarks

14 16,800 3.1 Intermediate enthalpy theory

13,7 19,800 3.22 Theory of Lees

15 17,600 3.15 Correlation of AVCO shock-
tube experimental results

We will base all our numerical calculations on laminar flow (n = 1/2),
and will use the value m = 3 for purposes of simplicity (this corre-
sponds to a gas with viscosity proportional to T1/2), and the value

C = 17,000 Btu rt~3/Zgec-! which 1s adjusted to match a mean of the
above results for air at velocities near peak heating (@ = 0.8). For
gases other than air we use the theory of Lees (ref. 13) to obtain for
hypersonic flow C =~ JpououBPr-2/3[(7 - 1)/7]1%/4. 1In subsequent calcu-
lations, differences in the Prandtl number and in the ratio of specific
heats for various planets are disregarded.
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Proceeding from equations (35), (34), and (31) with n =1/2, m = 3,
and ¢ = 17,000, the laminar convective heat-transfer rate can be written
in terms of the 2 function and the relative planetary constants

(80 = &/8cartns Mo = W/ Meartns €bc:) as

[ q Btu
q = k,aq = 590 {?r-z/su l/2g3/2r5/431/f} [k }
e ° oL TJCpAR | cos®e  rtPsec
(36)
where & = 0°/2z%/2. (If the flow were turbulent q =~ ﬁ2'2ZO'8, approxi-

mately, and we would have different powers appearing in equation (36).)
It is noted that the different variables affect the heat flux in a form
represented by a series of factors; the expression in curly braces rep-
resents the effect on heat flux of the particular planetary atmosphere,
the expression in brackets represents the effect of the physical charac-
teristics of the vehicle, that is, the mass, dimensions and shape of the
vehicle, and the dimensionless function q = a5/2z1/2 represents the
effect of the particular type of trajectory as determined by the lift-
drag ratio.

Whereas equation (36) for heating rate would be useful in studying
vehicles designed to operate at radiation equilibrium temperatures, an
equation for the total heat absorbed during entry is of more interest for
heat-sink type vehicles.

Q:ﬂthdS:kZqusdt (37)

=L /e
kz_sfklds_squd.s (38)

is the factor which takes into account the variations in heat flux over

the whole surface S wetted by the boundary layer. (For a hemisphere,

for example, k2 £ 0.5.) Combining equations (37), (36), and (30) yields
the following equation for the heat absorbed between U3 and u

-2/3,.1/2515/4 m |
Q = 15,900 {Pr :2,4 g }[kes /W]Q (39a)
&

where

where
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Heat radiation from the surface is not considered in these equations,
They are useful in studying vehicles incorporating heat sinks or ablation
cooling under conditions when the heat radiated away is small compared to
the heat absorbed; Q = AT(cm)gypk (where c 1is the effective specific
heat of the sink material) is proportional to the heat-sink weight. We
note here that the particular planetary atmosphere (g, r, B) and espe-
cially the particular trajectory Z(%d, L/D) affect the heating rate q
in a different fashion than the total heat absorbed Q. Examples
illustrating this are presented later.

Some Approximate Analytical Z Functions
Obtained From Truncated Basic Equation

By disregarding three different combinations of terms in the basic
differential equation (21), three special solutions are obtained which
yield results identical to previous approximate solutions. The details
are described in appendix C and lead to the following approximate
solutions:

Terms disregarded
Solution Vehicle (see eq. (2la))

Gravity, centrifugal

71 =BT (sin §)T in — Ballistic and 1lift forces; (40)
Yy ¢ = @ = constant
o o 1-G2 Vertical acceleration
I = . Glide and vertical component (41)
T BT <§> of drag force; cos ¢ = 1

7 - [24 Jor a Sk . .

TII =4 -ET+- Br oiln — - ip Gravity and centrifugal

i uj forces; cos ¢ 2 1 (L42)

A () e 2]

The Zi function provides an approximate solution for the motion and
heating identical to the solution of Allen and Eggers (ref. 1) for balli-
stic entry. The Zyy function corresponds to equilibrium gliding flight
originally discussed by S#nger (ref. 2). The corresponding aerodynamic
heating problems for this type of hypersonic flight have been discussed
by Eggers, Allen, and Neice (ref. 4) who also obtained a solution equiva-
lent to the Zyyy function for skip vehicles. As will be apparent later,
the 21 function for ballistic vehicles is quite accurate for angles of
descent greater than several degrees Cfﬁ;|®i|>>2 approximately) and the
Z11 function for hypersonic ide vehicles is quite accurate for L/D

-~

ratios greater than about 1 (Jpr L/D:>3O approximately) provided P31 =0
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The accuracy of the Zyyy function for skip vehicles, however, depends

on both L/D and the initial angle ¢j. The conditions for applicability
can be determined from an approximate solution which considers both the
gravity and centrifugal forces that were neglected in obtaining Z1II-

In appendix C the following approximate solution is developed for satel-
lite entry (G4 =1, 2i = 0) at small initial angles @i:

= = _ L 1 o
ZTy = U »JEI—" ¢gln u 55 l:l + W] in u} (43)

By comparing with Zyy1, We see that the gravity and centrifugal forces

can be disregarded provided 2pr|9i(L/D)|>> 1. An interesting feature
deduced from Zyy 1in appendix C is that the total heat absorbed in the
first skip (which is perhaps the most important) is essentially independent
of both the initial angle ¢ and the velocity of exit from the skip.

The heat absorbed varies as l/JEE and hence is a minimum for entry at
CLmax (see appendix C). For flat plates in Newtonian flow this corre-

sponds tc an optimum L/D of 0.7.
Some 2 Functions Obtained From Full Equation

Entry from a decaying orbit for various L/D (g =1, 91 = 0).- We
turn now from the special solutions obtained by truncating the r'ull equa-
tion (21), to some solutions of the complete nonlinear equation applicable
to vehicles entering from a decaying satellite orbit. As the apogee of an
elliptical orbit is slowly reduced by drag (primarily exerted near the
perigee), the orbit eventually becomes a near circle and then begins a
gradually decaying spiral; hence, the initial angle @3 for this type of
entry 1is taken as zero, and the initial velocity Ui = 1. The peak heat-
ing and the maximum deceleration occur at such small angles that
cos ® = 1. The differential equation (21) is then

=2
T @_-§>-l'“+ﬁ%=o (L)

a7 \dd T Tz
and the corresponding boundary conditions for decaying orbits are
z(1) =0 z'(1) =0 (45)

This system need be solved only once for each value of the parameter
JE;(L/D), and the results are then applicable to any planet and to any
vehicle with arbitrary shape, size, Or mass. In particular, the universal
7 function for L/D = 0 is presented in figure L(a) (GZ is plotted since
this product stays within smaller bounds than Z). Solutions of equa-
tion (44) also have been carried out for various values of «/Pr(L/D). The
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numerical method employed is described in appendix D. Curves of the

Z functions and related quantities are presented in figure 4(b) for
values of Afpr(L/D) corresponding for earth to L/D = 0.1, 0.25, 0.5,
and 1. They are plotted in coordinates especially suited for comparison
with the Zy1 function of equation (41) representing Singer's concept

of an equilibrium hypersonic glide. Values are not shown for L/D > 1
since Z11 can be used in the velocity range of interest for these cases.
This is evident from the various curves in figure 4(b). The dashed curve
represents Z1] which is the exact solution for L/D = o, From the 2
functions the various quantities of engineering interest, such as the
deceleration, descent angle, range, time, density-velocity relationship,
dynamic pressure, Reynolds number, heating rate, and total heat absorbed
can be computed from equations (26) to (39) presented earlier.

Nonlifting entry with initial angle of descent (Ui = 1, ¢i < 0).-

We now consider entry when the initial descent angle is not negligible,

as it is in the case of a decaying orbit, but is some finite value ;.
Entry with an initial angle occurs in the case of a ballistic vehicle,

or a satellite to which a retrorocket has been applied to divert the orbit
into one which will induce the entry process. The differential equa-

tion (21) for nonlifting bodies is applicable for large as well as small
angles of descent.

L (e _ 2 —= 2 costp =0 (L6)

= 4 (az z)_l-‘2
W \aw T W

The initial conditions are
z(ui) = 0 2%(Ui) =4PBr sin o3 (47)

In this case we have a double parameter family of sclutions (ﬁi and

JE; sin ¢ ). Actually, we need solutions to the nonlinear equation (46)
only for quite small initial angles inasmuch as the Allen-Eggers scluticn
(eq. (LO)) is applicable for moderate and large angles., This may be seen
from figure 5 which presents example Z functions correspoending to the
ncnlinear equation for various =-¢; up tc 20° with uj = 0.9 (23,400 fps,
for earth). Since the ordinate is Z/A[/Br(-sin ¢;), the Allen-Eggers
soluticn is represented by the ordinate function u Zn(ﬁi/ﬁ) on this plct.
It is evident that their solution, which neglects gravity and centrifugal
" forces, is quite accurate near peak heating (U = 0.7) for descent angles
greater than about 50. Near maximum deceleration (T 2 0.4) the descent
angle has tc be scmewhat larger for comparable accuracy. It is clear
that, as far as peak heating and maximum deceleration are concerned, a
family of scluticns to the nonlinear equation need cnly be computed for
small initial angles.

The 7 functicns fcor small initial angles and for the case of
satellite entry (Ei = 1) are of special practical interest, These are
presented in figure 6(a) fer varicus values of . JBr ¢4 such that in the
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earth's atmosphere -p; = 1°, 20, 3%, 4O, and 6°. Rather than to plot

7 itself, the quantity 30 TZ 1s plotted which represents for the earth
the horizontal deceleration in g's, Tabulated values are presented in
table T for -@; = 09, 0.5°, 1°, 20, 39, and 40, It is noted that these
values tabulated are solutions to equation (46) with the cos4¢ term
included, and hence are applicable to terminal conditions of small U
(say less than 0.1) where @ 1is large as well as to conditions near peak
heating and maximum deceleration where ¢ is small. The tables of Z
apply to any planet for the same initial value of BT ®i. The supple-
mentary tables of ~-Oearths (85/T)earths end tegrtn can be applied to
other planets over the range where o is small by regarding the tabu-

1ated values as representing -(«JBr /30)o, (JBr /20)(As/r), and o7 JBg t,
respectively (see egs. (27), (28), and (30)).

Entry with initial angle of descent for various L/D (U3 = 1, P1<0).-

If we now consider a vehicle with 1ift, we must restrict our considerations
to smell initial angles of descent -Qj and to the portion of trajectory
over which -¢@ remains sufficiently small that (L/D) |tan 9|<<1 (assump-
tion (b)). The basic differential equation (21), with cos @ = 1, becomes
the same as equation (44), and the initial conditions are now

z(1) =0 7t(1) =.Jpr ¢4 (48)

Solutions to equation (44) with these initial conditions have been obtained
for various values of u}Br ¢; and for various values of the parameter

JBT(L/D).

In figure 6 some curves representing 7 functions are presented
as a function of -¢3 for earth. The various portions of this figure
correspond to L/D for earth of 0.25, 0.5, 0.7, and 1. It is evident
from these figures, as might be expected, that small values of L/D and
-¢p; do not result in any significant skipping, but once the L/D is
increased beyond a certain amount, Or the initial descent angle is greater
than a certain value, then numerous skips of sizable intensity occur
during the entry trajectory. Information on the heating rates, total heat
absorbed, and horizontal range during entry, has been obtained from these
7. functions and is discussed later. The 2 functions in figure 6
could be applied to any planet by noting that @i for earth is equivalent
to a value (Br)@"l2 times as great on another planet, and that a given
(L/D) for earth is equivalent to a value (pr)g~Y2 times as great.

Atmosphere braking for various L/D (Wy >1, 91 < 0).- In entering

the atmosphere of a planet from space, the approach velocity can be com-
parable to escape velocity (Ui = JE). Tt is uneconomical in weight to
use chemical rockets for reducing the approach velocity in outer space,
and it is possibly uneconomical in time to use a low-thrust space engine.
Hence there is considerable interest in the braking process of making
successive passes through an atmosphere in order to reduce stepwise the
zelocity and the eccentricity of an orbit to near circular conditions

Uy =1).
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In analyzing the atmosphere braking process, cos @ can safely be
replaced by unity, so the basic differential equation (21) becomes once
again the same as equation (44), but the initial conditions are now

2(wi) =0  2'(Ti) =JBr 91

where Ui > 1. By arbitrarily selecting various values for the angle of
entry @i, various solutions are obtained corresponding to single passes
through the atmosphere at various altitudes from the surface. It might

be more convenient in describing a single pass to select as the arbitrary
parameter the velocity Uex at the exit of the pass, or 30(TZ) max, which,
for the earth, would be the maximum deceleration in g's experienced during
this pass, and would be independent of W/CpA.

In figure 7, four Z functions are presented for nonlifting vehicles
which start the braking process with essentially escape velocity (Ei=.l.h)
but with different values of maximum deceleration in the first pass. The
short-dash curve (a) corresponds to a maximum deceleration in the first
pass of 30(WZ)yax = 0.46. It is seen that, starting with this initial
pass (and with no further control exercised on the vehicle) six passes
would occur before the seventh pass completed the entry process. The
long-dash curve (b) in figure 7 corresponds to 30(0Z)pgax = 1.65 for the
first pass. 1In this case only two passes occur before the third pass
completes the entry. The other two curves (c)} and (d) in figure 7 corre-
spond to conditions wherein the first pass is the only one, inasmuch as
it is made sufficiently close to the planet surface to complete entry
without ever emerging from the atmosphere.

In computing the Z function for a successive pass, the initial
angle was assumed to be the same as the exit angle of the previous pass.
The exit angle was taken at the point where dr/r = du/u. Further dis-
cussion of these Z functions, and the results of other such functions
computed for atmosphere braking are presented later.

RESULTS AND DISCUSSION

From the variocus Z functions presented, it is relatively easy to
study the influence on entry motion of several variables of practical
interest. For example, we could study the effect of lift-drag ratio on
deceleration and aerodynamic heating, or the effect of a small error in
initial angle of descent on the range over which the re-entry process
takes place. Before considering such topics, however, it is desirable
to discuss two preliminary items. First, we compare some results from
the present approximate analysis for an exponential atmosphere with more
exact machine calculations for a standard atmosphere. This serves to
provide a feeling for the accuracy of the present analysis, and also to
show how any of the subsequent results readily can be corrected, if
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desired, for atmospheric temperature variations. Second, we discuss the
relative deceleration and aerodynamic heating of various planetary atmos-
pheres. This provides multiplication factors which enable any of the
subsequent results for the earth's atmosphere to be quickly converted to
results for other planetary atmospheres.

Comparison of Present Analysis With Other Calculations

An insight into the approximate accuracy to be expected from the
present analysis can be obtained by comparison with machine calculations
of the pair of motion equations for specific vehicles. Differences
between the present analysis and more exact calculations can arise
inasmuch as the present analysis makes certailn assumptions about the
trajectory (that is,|dr/r]<<|du/u| and I(L/D)tan @I << 1) and about the
atmosphere (poo ~ "BY) which need not be made in numerical machine cal-
culations. The a posteriori check of the trajectory assumptions, as
presented in appendix A, shows that insofar as convective heating and
peak decelerations are concerned, only a few percent difference should
be expected for vehicles entering from a gatellite orbit. A check of the
assumption of an exponential atmosphere can be obtained by comparing with
numerical calculations for some standard atmosphere. In figure 8 a com-
parison is made of the present analysis with numerical calculations from
the pair of motion equations using the ARDC model atmosphere. These
numerical calculations were made by M. W. Rubesin and G. Goodwin using
equations equivalent to (6) and (7) without discarding any terms. The
curves in figure 8(a) show close agreement of both the altitude and the
descent angle as a function of velocity. The curves in figure 8(b) show
similar agreement of the circumferential distance traveled (As/r), and of
the maximum deceleration (within 6 percent). This small difference in
maximum deceleration is believed due primarily to the departure of the
ARDC atmosphere in certain altitude regions from the idealized exponential
atmosphere of constant B (1/23,500 £t=1).

As noted earlier, the present analytical method can readily be
applied using semilocal values of JE? if it is desired to make correc-
tions to the results in order that they more closely represent some
standard atmosphere. Corrections also can be made to allow for atmos-
pheric seasonal variations, or for variations with the earth's latitude.
In this sense, analytical results for an exponential atmosphere are actu-
ally more general for global application than numerical results for any
single standard atmosphere. This can be seen from the results which
follow. Let us consider the maximum deceleration for entry from a
decaying orbit. This occurs at a velocity near U = 0.43 at which point
7z = 0.6k (fig. 4(2)). The approximste altitude at which maximum deceler-
ation occurs is obtained by substituting either into equation (31a) to

ield = 5.5(W/CpA)x10~ or intc equation 1b) to yield
y (Poo/P0) oy aujat =0 5(W/CpA) , q (31b) to y
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Ymax du/ay = 232200 <é-96 - in 5%3) £t (49)

and is seen to depend on W/CDA. Since Br for the ARDC model atmos-
phere depends weakly on altitude, as shown in figure 2, the maximum decel-
eration WBr(GZ)max = 0.278 JBr in a standard atmosphere also will
depend weakly on altitude, and hence weakly on W/CDA. The resulting
values of -amax/g are shown by the solid curve in figure 9, for (W/CDA)
values ranging from 0.01 to 1000 lb/ft. They agree very well with the
points shown which represent numerical integrations (Rubesin-Goodwin) of
the complete equations for the ARDC model atmosphere.

If desired, similar corrections for atmospheric variations also
could be made to other quantities computed for a mean value JE; = 30.
Thus, the distance traveled varies as (Br)~*/2 (eq. (28)), and the con-
vective heating rate varies as (Br)l/% (eq.(36)). It is noted that the
fluctuations in JE? with altitude, as plotted in figure 2 correspond
very closely to the fluctuations in T-1/2, as should be expected, since
B = Mg/RT. Hence any variations in mean atmospheric temperature, such as
seasonal variations or longitudinal variations, can Jjust as readily be
corrected for as variations with altitude.

Gazley (ref. 8) has developed an approximate theory for the case of
orbital decay with L/D = 0 by assuming U¢ 1is constant. This arbitrary
restricticn yields results for orbital decay without 1lift that are quali-
tatively similar tc the present analysis, but guantitatively dissimilar.
Foer example, the density-velocity relationship near peak heating (T = 0.8)
differs by a factor cf roughly 2. For higher velocities the discrepancy
rapidly increases, and for lower velocities it decreases. The peak decel-
eration cccurs at lower velocities and is not greatly affected by Gazley's
assumpticn. For the earth (WBr = 30) he obtains a maximum of 9.6 g at
T = 0.54, whereas the present analysis, which does not make any assumptions
sbout the u(9) relationship, yields 8.3 g at U = 0,43,

Relative Deceleration, Heating, and Reynolds Numbers
For Entry Into Various Planetary Atmospheres

For a given size and shape of vehicle the deceleration, laminar
heating rate, total heat absorbed, and Reynolds number vary, according
to equations (26), (36), (39), and (33), respectively, as

h

a

t

gNBr 2

q ~Pf2/qblégskr5ﬂﬁlhzlk
Q ~ Pr'2/3u01/2gr5/4B’l/4Z'l/2

Re ~ gl /231/2%—12
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Tn the case of nonlifting entry from a decaying orbit (zero initial angle
of descent), the characteristics of the planetary atmosphere QJEF) do not
enter the differential equation or the initial conditions (z1 = 0,

Zi' = 0); hence Z can be disregarded in computing the relative values

of the above quantities for various planets. In the more general case of
entry from high altitude (Zj = 0) with fixed values of Br @3 and .ffr(L/D),
the 7 function still would be the same for all planets. Neglecting dif-
ferences in Prandtl number and ratio of specific heats, we have for several
planets the following relative values applicable to nonlifting entry from
decaying orbits, or to any other type of entry where the values of JE? D5
and JBr(L/D) are fixed:

at Reg

(an/ _)e relative relative total relative
relative heating rate, Reynolds
deceler-~ ; ‘ heat absorbed,
ation (Hol’283/2r5/451ﬁ4)@ o numoer,
(g:JE%)@ (“ol/ gr5/4B'1/4)® (gl/eﬁl/e%-l)e

Venus 0.9 0.7 0.8 1.

Earth 1.00 1.00 1.00 1.00

Mars .2 .09 .2 4

Jupiter| 5. 20, 50. 2.

It is to be remembered that, in the case of a vehicle with 1ift, in order
to have the same Z function, a given L/D ratic on earth is equivalent
to an L/D ratio (Br)@‘l/e times as great on a planet other than earth,
and that a given @i on earth also is equivalent to a @i value
(Br)®‘1/2 times as great on another planet. This equivalence, together
with the above table, enables any result for earth to be converted to a
result for each of the other planets.

In the special case of entry at a constant angle @5, the atmospheric
characteristics enter the initial conditions on Z (z1' = JE; sin @1).
Since equation (40) shows that 2 ~ JBr for this type of re-entry, we
include this in the expressions (50) to obtain the following relative
values applicable only to ballistic entry (/D = 0) at constant ¢

(du/dt) g de Qe Ree
relative relative relative relative
di?eler- hiati%g rﬁte,/ toEal gezt Reynolds number,
2 T10m, (pol/2gd/2r3/2gl 2)e absoroeda, (g1/25r1/2“ -1)
(gBr)e (hot/2gr)e o ‘e
Venus 0.9 0.7 0.7 1.
Earth 1.00 1.00 1.00 1.00
Mars .09 .06 .2 .2
Jupiter | 11. 70. 20. L,
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These relative values for ballistic entry are exactly the same, of course,
as would be obtained directly from the theory of reference 1 and are
applicable for initial angles greater than about 5°. The previous table
would apply for @5 = 0°. For nonlifting entry with ®; the order of a few
degrees, the relative values for various planets would be intermediate to
the above two tables.

We see that entry into the atmosphere of Venus involves only slightly
less deceleration and heating than does entry into the eartht's atmosphere,
whereas entry into Mars involves much less deceleration and heating, and
entry into Jupiter, much more. The Reynolds numbers, however, are not as
greatly different for the various planets.

Effect of Lift on Deceleration, Heating Rate, and Total Heat
Absorbed During Entry From Decaying Orbits

From the relative values of deceleration and heating for various
planets, together with the 2Z functions already presented, certain
quantities of practical interest readily can be computed. The remainder
of this report concerns such application of the 2Z functions for the
various types of entry. In the present section we discuss first lifting
entry from decaying orbits (U1 = 1, 91 = 0).

Deceleration.- A plot of the horizontal deceleration du/dt in g's
for the earth's atmosphere (equal to 30 GZ) is presented in figure 10 as
a function of the dimensionless velocity u for various lift-drag ratios.
The powerful effect of L/D ratios the order of only a few tenths is
evident from this figure. It is also evident that the maximum decelera-
tion occurs near a velocity of 14 2 O.4. These curves are independent of
the shape, size, and mass of the vehicle. The resultant deceleration is

taken as a =nJ(du/dt)2 + [(av/at) - (u2/r) + g]®. For no motion this
expression reduces to g, the gravitational constant of the planet. By
substituting equations (16) and (20) we have

2
a -JE; 4z L
" oor g 1+ <%an o - 5) (51)

which, for small angles (|¢| << L/D, cos ¢ 2 1, tan®p << 1) yields
(%) 2 JBr(02) g, N1 + (/D)2
max

A plot of this approximation for the maximum resultant deceleration is
shown in figure 11 for the several planets considered. Once again the
strong influence of the L/D ratio near L/D = O is evident. Also
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evident are the relatively low decelerations for Mars compared to earth
and Venus, and the relatively high values for Jupiter.

From the viewpoint of human tolerance to acceleration stress, it is
not only the peak deceleration which must be considered, but also the
orientation of the body, the duration of stress, and the rate of onset of
deceleration. Numerous experiments with the human centrifuge have shown
that human tolerance is greatest in transverse orientation; that is, with
either chest-to-back or back-to-chest loading. Centrifuge experiments
(see, e.g., ref. 16 and the references quoted therein) also have shown
that the magnitude of acceleration is relatively more important than the
duration, in the sense that if the acceleration is increased 10 percent,
the tolerable duration is decreased by a factor of about 2. Thus, a
method believed to be conservative for calculating the effective duration
At during entry is to assume that the maximum deceleration acts over the
entire time it would take for this deceleration to slow the vehicle from
orbital velocity to rest. Curves of maximum deceleration versus duration
computed in this manner are presented in figure 12 for various planetary
atmospheres and for various L/D ratios. Included in this figure is a
boundary representing human tolerance in the transverse orientation for
conditions of rapid onset of acceleration (ref. 16 and references quoted
therein). This boundary also is conservative inasmuch as entry decelera-
tions are built up relatively slowly under which conditions, according to
the centrifuge experiments of reference 17, the body circulation builds
up a reflex action of effectiveness comparable to that provided by a
G-suit. The conservative limits determined from this figure are indicated
in figure 11. It is evident from both figures 11 and 12 that the deceler-
ations for orbital entry into the earth's atmosphere are well within human
tolerance even for nonlifting bodies. For Mars, human tolerance is suf -
ficient to permit entry at sizable angles of descent or with negative
lifting devices. Manned entry into Jupiter, however, would require a
positive lifting body, or some other device in order to maintain the
decelerations within human tolerance.

Heating rate.- In examining the eflect of 1ift on convection aerc-
dynamic heating of entering vehicles, we can use the same Z Tfunctions
as emplcyed in studying the decelerations. We note first that for many
vehicles, the values of Reynolds number near peak heating are sufficiently
low that one would expect a considerable extent of laminar flow, yet suf -
ficiently high to be in continuum-gas flow rather than free-molecule flow.
A plot of Re/l at peak heating is presented in figure 13 as a function
of W/CDA for entry from orbital decay into the earth's atmosphere. A
vehicle on a large parachute would correspond to W/CDA the order of
0.1 1b/ft2, and, with L/D = 0, to Re of about 107 ft~1. For such con-
ditions the peak heating, which occurs at a Mach number Me & 20, would
be near the slip-flow regime (Re/MOo = 1). A reasonably blunt metallic
structure would correspond to W/CDA values the order of 10 to 100 1b/ft?,
and to values of Re/l the order of 10%® to 10°. Such values are well
within the continuum regime, yet low enough to be associated with laminar
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flow. The curves in figure 13 are for earth but can be applied to other
planets by multiplying the ordinate by the value of the relative Reynolds
number already tabulated for several planets.

For a given atmosphere the laminar nheating rate is proportional to

W g = [ W a5/2Zl/2
CpA CpA ’

A plot of the dimensicnless heating rate a as a functicn of U is
presented in figure 1k for entry “rom decaying orbits. The maximum value
ceeurs at a velocity u  of about 0.8 and is a function only of the param-

eter fBr(L/D) asz fcllows:

JBr(L/D) (L/D)Earth Imax qmaxl/4
-1 -0.5 0.375 | 0.783
-7.5 -.25 .302 LR
-3 -1 .253 .709

0 0 .218 .683

3 .1 .184 .656
7.5 .25 .138 .610

15 .5 L098 .560
30 1.0 .0T70 L51h

For L/D ratios greater than 1 the asymptotic solution 277 =

= 2 as noted in appendix C.

343 VBr(L/D)

We will consider that the vehicle dimensions and weight (R, A, and W)
are fixed, and will study the influence of vehicle shape (CD and L/D).
Under these conditicns the maximum heating rate is proportional to
qmax/anﬁ . The ei'fect of lift-drag ratio on maximum heating rate (which
occurs at a U of roughly 0.8) is illustrated in figure 15 Tor entry
from decaying orbits. The quantities plotted have been normalized to
unity for L/D = 0, and can be applied directly to any planet, as can th-
curves in figure 14, by recalling that a given L/D for Earth is equive-
lent to a value (Br)g*’2 times as much for a planet cother than Barth. If
the L/D ratio could be increased incefinitely without changing the drag
coefficient such as by using reaction 1ift, then the maximum laminar heat-
ing rate would be proportional to the dotted line in figure 15 represent-
ing qmax and would decrease indefinitely with an increase in L/D

can be used to yield Q..
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(asymptotically as (L/D)™*/2 for L/D greater than about 0.5). Physically
this decrease arises because the greater the 1ift, the less rapid the vehi-
cle descends, so that the heating occurs at higher altitudes where the
density is lower. On a practical device which uses gerodynamic 1ift, how-
ever, the L/D ratio cannot be increased much without making the vehicle
more slender and decreasing Cp; a decrease in Cp 1increases the heating
rate (~ 1 /JEB) because it results in less slowing down, thereby causing
the peak heating to occur at lower altitudes where the density is higher.
As a result, there is an optimum L/D ratio for minimizing the heating
rate which, for the three families of shapes indicated in figure 15, is
near the range of L/D between about 0.5 and 1. For the family of half-
cones and half-paraboloids, the L/D ratio was changed by changing the
fineness ratio while maintaining the flat tops parallel to the stream
direction. For the family of flat plates the L/D ratio was changed by
changing the angle of attack. In all cases, Cp and L/D were computed for
Newtonian flow. The optimum L/D ratio is seen to depend somewhat on the
particular aerodynamic shape, since L/D and Cp are coupled somewhat dif-
ferently for different shapes. It is evident that the net benefit to be
gained by using aerodynamic 1lift amounts to about a factor of 2 in reduc-
ing the maximum rate of aerodynamic heating at a stagnation point.

Inasmuch as the optimum L/D ratics for minimizing the maximum heat-
ing rate are greater than about 0.5, they are in the range where the 2777
function for orbital decay is a good approximation near peak heating (see
fig. 4(b)). From equations (36) and (k1) we see that for a given planet
and given radius at a stagnation point,

.- /._"Lc'l~ [0 s [ 1-0°
CpA CpA %(L/D)
[
Ynax ~ EEK (5“)

and we see that the various minima in figure 15 each correspond to enter-
ing at CLmax' The peak heating always occurs at a dimensionless velocity

T =.J2/3 = 0.82. For flat plates in Newtonian flow Cp = 0.77 at an a

angle of attack of 550, for which L/D = 0.71. As noted in appendix C,
these conditions also turn out to represent optimum ones for minimizing
the total heat absorbed [{or skipping-type entry, because in this case also
q and @ vary as (L/D)"1/2.

since L/D = CL/CD,

Surface temperature for radiation equilibrium.- The stagnation sur-
face temperature experienced during entry of a structure having relatively
small heat capacity (e.g., a thin skin) is calculated by equating the
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radiation heating rate to the convective heating rate. For entry from
decaying orbits we may set cos ¢ = 1, inasmuch as ¢ near peak heating
varies from -2.6° to -0.2° as L/D varies from O to 1. We have

eoTy * = qg = 590 /6§%§ §  Btu ft~Zsec™t (55)

where € 1s the surface radiative emissivity, R the radius of curvature,
and o = 0.48x107*¥ Btu ft™2sec”! OR™* is the Stefan-Boltzmann constant.
By substituting the value of ge for Earth there results (for T, in °R,
R in ft, W/CpA in 1b £t-2),

8

1/
Tw €l/‘l-RLL/S - 38)40 (EV];—A‘ 61/4 (56)

S

- \ ~5/2 .
where @ for laminar flow is equal to T 2172, The maximum value

qmaxl/4 is listed in the preceding table for entry from decaying orbits.

Other types of entry would require the use of other Z functions, but
equation (56) would remain unchanged. For a planet other than Earth, the
radiation-equilibrium temperature calculated from the above equation for
Earth would have to be multiplied by the l/h-root of a quantity already
tabulated; namely, the relative rate of heating qg for that planet. The

relative radiation-equilibrium temperature factors Ty, = ael/4 are:
_ve
Venus 0.91
Barth 1.00
Mars D5
Jupiter 2.7

A graph of the maximum temperature parameter Twsel’4R1/8 for entry from
decaying orbits is presented in figure 16 as a function of W/CpA (W in
Earth weight). It is noted that the numerical calculations for nonlifting
satellites descending in the Earth's atmosphere, as reported by Kemp and

Riddell (ref. 6) and by Gazley and Masson (ref. 5), agree well with the
analytical variation represented by the present snalysis.

The curves for Twg in figure 16 could be applied to other planets
for any given value of Jﬁ}(L/D) by multiplying the ordinate by the
quantity Tw@ tabulated above. Since L/D is a more convenient variable
than JE;QL/DL however, a separate plot of the parameter
Twsel/4/(W/CDAR)l/8 (which represents the maximum surface temperature that
is experienced during entry for radiation equilibrium at a stagnation
point of radius of curvature R) is presented in figure 17 as a function
of’ L/D for several planets. The coupling between Cp and L/D 1s taken
as that for the family of half-paraboloids. The others would not be
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greatly different, as may be seen from the curves in figure 15. We can
deduce from figure 17, for example, that a nonlifting body with € = 0.9,
and W/CDAR = 1 1b £t~2 (e.g., R = 1 ft and W/CDA =1 1b ft™2 or R = 10 ft
and W/CDA = 10 1b ft~2) would experience during entry from orbital decay

a maximum stagnation temperature of approximately 1000° F for Mars,

2000° F for Venus, 2200° F for Earth, and 6800° F for Jupiter.

Total heat absorbed.- It is emphasized that the effect of lift-drag
ratio on the total neat absorbed @ 1is quite different from the effect
just discussed on the heating rate q. The use of lift prevents a vehicle
with a given drag coefficient from descending as rapidly as a nonlifting
one, thus leading to lower heating rates at higher altitudes, but the lift
also prolongs the descent markedly. This prolongation dominates over the
reduced rate of heating, to lead to a net increase in total heat absorbed
with increasing L/D. That the total heat absorbed must increase with an
increase in L/D, may be clearly seen from the general equation

Cr' /S\ /1 .2
Q =E5<TA-> <§ mV> (57)

developed by Allen and Eggers in reference 1. For a given Cp, an increase
in L/D does not change the kinetic energy loss, but it dces increase the
effective laminar skin-friction coefficient Cp'! 1inasmuch as the corre-
sponding increase in altitude results in the heat being taken aboard at
lower Reynolds numbers where Cp' 1is higher.

The quantitative magnitude of the increase in @ with an increase
in L/D may be deduced from equation (39) for Q (which neglects the heat
radiated from the surface). For a given atmosphere (given Pr, u, g, T,
B) and a given size and weight (A, R, W), @ for laminar flow and
cos @ = 1 is proportional to the gquantity
4y 5372

a2 u

where @ is a function of L/D and is very insensitive to the lower
1imit U down to which the integration 1s carried (providing u is
small). For convenience in evaluating E from the 2 functions, we
select an arbitrary upper limit Ty = 0.99. The following values for
Q are obtained for entry from decaying orbits:
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Q
JBr(L/D) (L/D)gartn  for T, = 0.99
-30 -1.0 0.75
-15 -.5 .93
-7.5 -.25 1.09
-3 -1 1.23
0 0 1.36
3 1 1.54
7.5 .25 1.90
15 .5 2.53
30 1.0 3.54

For L/D ratios greater than 1 the asymptotic Z77 function can be used
to yield Qry = 0.62(Br)1/4/L/D for the heat absorbed between Ty = 0.99

and T = 0. (See appendix C for a more general expression for QiI.)

The effect of lift-drag ratio on the total convective heat absorbed
(disregarding radiation from the surface) during entry intc the earth's
atmosphere from decaying orbits is plotted in figure 18. These curves
are normalized to unity for L/D = 0. In contradistinetion to the effect
on q, an increase in L/D by itself is seen to always increase §, and
hence @, as anticipated from equation (57). When the coupling between
L/D and Cp 1is considered, an optimum occurs at negative L/D ratios,
near the range -0.7 to -0.5. In view of the fact that these negative
L/D ratios result in high decelerations (fig. 11) they would not be
feasible for a manned entry into the earth's atmosphere; the practical
optimum for a heat-sink vehicle would be near L/D = 0.

In figure 19 curves are presented of the total heat absorbed per unit
area during entry into various planets from decaying orbits. Radiation
from the surface is disregarded for these curves. They represent the
family of half-paraboloids, but the other families would not be signifi-
cantly different. As would be expected, the minimum for each planet occurs
at a negative L/D ratio. For Mars the decelerations are not excessive
for L/D near -0.5 (see fig. 11) but the reduction in total heat absorbed
compared to a nonlifting vehicle is only about 10 percent.

Nonlifting Entry From Deflected Orbits

In the discussions thus far we have considered only the trajectories
resulting from decaying orbits wherein the initial descent angle is
essentially zero. This type of entry leads to relatively shallow angles
of descent with relatively low heating rates, but provides very little
control over the time of entry and the location of impact. One method
commonly envisioned to fix the time of entry, and greatly improve the
accuracy of landing in a predetermined area, is to induce entry by
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suddenly deflecting an orbit sc as to enter at some initial flight path
angle ®i. A retrorocket force, for example, or a rocket force applied
in the direction toward the planet center will initiate such entry.
Induced entry of this type, however, results in greater decelerations and
can affect the aerodynamic heating problem either adversely or favorably.

A curve is presented in figure 20(a) showing the effect of initial angle
®i on the maximum deceleration experienced during entry of nonlifting
vehicles into the earth's atmosphere. Also shown for comparison is the
approximate limit of human tolerance (for rapid onset with transverse
orientation), and a dotted curve corresponding to the Allen-Eggers theory
for ¢ = constant = ®i. This theory for Ui = 1 can be used for descent
angles greater than about 4O or 5°. Above about -@; = 30 the decelera-
tions exceed human tolerance, so that some method of deceleration allevia-
tion, such as provided by lift, or by increasing the value of W/CDA
during descent, would have to be employed for manned vehicles entering at
these larger angles of descent. The curve of (dﬁ/dt)max in Earth g's
can be applied to any planet by regarding the abscissa scale as being
-WPr)gPi and then multiplying the ordinate scale by (g JBT)g-

The effect of initial angle on maximum laminar heating rate and on
the total laminar heat absorbed is shown in figure 20(b). As would be
expected, the steeper the descent the greater the heating rate. The total
heat absorbed, however, is less for the steeper descents because the
shorter duration more than compensates for the greater laminar heating
rates. Equation (57) shows that this must be the case, since entry at
larger angles results in the heat being taken aboard at lower altitudes
where the laminar skin-Triction coefficients are small. If the flow were
turbulent the correspending reduction in Cp' and hence in a with an
increase in descent angle would be less. The curves in figure 20(b)
approach the curves developed from the Z1 function corresponding to the
solution of Allen and Eggers (see eqs. (C3) and (Ck) of appendix C). In
order to be consistent with the cother values of Q representing the heat
absorbed from T = 0.99 to @ = 0, a calculated factor 0.8% has been applied
to equation (CL) which represents the heat absorbed from U =1 to uw = O.
It is seen from figure 20(b) that the Allen-Eggers solution for heat
transfer in this case (UWj = 1) is quite accurate for descent angles greater
than about 2°. The curves in figure 20(b) can be applied to other planets
by regarding the abscissa as a scale for the quantity -QfEf)@@i‘

In the figure 20(c) a curve is presented showing the strong influence
of initial descent angle on entry range for Earth. Two incremental ranges
are shown: a solid line curve for the distance between the point where
T = 0.995 and the impact point (W = 0), and a dashed-line curve for the
distance between U = 0.99 and impact. From the slope of the solid-line
curve we obtain the lower curve shown of average miss distance for an
error in @5 of 0.5°. It is to be remembered that this miss distance
curve does not consider the essentially dragless portion of a deflected
orbit from the point of orbit deflection to the point where a = 0.995,
and hence it is indicative of only the entry portion of the practical
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procblem of estimating miss distance. The curve illustrates, however, the
advantage of using a small initial descent angle in order to greatly
improve the ability to determine impact point.

A further contribution to miss distance which can be studied with
the present equations is that due to atmospheric variations in temperature
with either season or latitude. Equation (28) shows that As ~(JBr)~%,
so that a *15-percent seasonal variation in temperature would correspond
to a z7-percent variation in JE} and in As. For small initial angles,
say @3 = -1°, the range during entry from U = 0.995 to impact is roughly
1000 miles according to figure 20(c), and hence the impact point would
vary *70 miles. The entry range would be greater in summer than in winter.

A graph of the Reynolds number per foot at peak heating for nonlifting
entry into the earth's atmosphere with Vi =1 is presented in figure 21
for -g; = 09, 5°, 10°, 20°, k0%, and 90°. The -¢; = 0° curve is based
on the 2 function of figure 4(a). All others are based on the ZT
function corresponding to the Allen-Eggers solution. Entry at other values
of Yi’ according to this solution, results in values of Re proportional
to Vi.

Lifting Entry From Deflected Orbits

If a vehicle with L/D > 0 enters the atmosphere from a deflected
orbit at a sufficiently large initial angle of descent, the entry trajec-
tory is comprised of one or more skips. This is to be expected on physical
grounds and is evident from the 2Z functions already presented in fig-
ures 6(b) to 6(e). During the first portion of descent, a vehicle under-
going a sizable skip will, at the bottom of the skip, decelerate and take
on heat at a lower altitude than a vehicle at the same velocity which
glides in smoothly from a decaying orbit (p{ = 0). For large initial
angles of descent, then, we might expect a skipping vehicle entering from
a deflected orbit to experience greater decelerations, higher heating
rates, and shorter entry range than a gliding vehicle entering from a
decaying orbit. On the other hand, since the skipping vehicle takes on
most of its heat at a lower altitude (where the skin-friction coefficients
are lower) we would expect from equation (57) that the skipping vehicle
would absorb less total heat during entry than the orbiting-decay vehicle.
Calculations from the 2 functions of figures 6(b) to 6(e) show these
various expectations to be the case for initial descent angles '(@i)Earth

greater than about 1°. This is illustrated in figure 22(a) for maximum
laminar heating rate, in figure 22(b) for total laminar heat absorbed, and
in figure 22{(c) for entry range. The expected increase in deceleration is
already evident from figures 6(b) to 6(e) which show 30 GZ ~ du/dt as the
ordinate.

If a vehicle with L/D > 0 enters the atmosphere from a deflected
orbit at a very small initial angle of descent, so that the trajectory
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might be described more appropriately as a rippling descent rather than

a skipping one, then the peak deceleration and maximum heating rates can
actually be slightly smaller than for the same vehicle gliding in from

a decaying orbit. What happens in such cases may be seen, for example,
in Tigure 6(c) by comparing the curves for -¢; = 1° and -@; = 0°. The
rippling entry (-@i = 1°) has one maximum on each side of the maximum

for -9i = 0° representing orbital-decay entry. These two maxima in
deceleration for -3 = 1° are slightly less than the single maximum for
-p; = 0°. A similar situation can exist for the maxima in heating rate.
As a result, the curves in figure 22(a) for the dimensionless maximum
heating rate qﬁax for lifting vehicles entering from deflected orbits
show slight waviness and sometimes slight reducticns below the values for
-¢; = O when the initial descent angle is less than about 1/20 to 1°.
Consequently, we can say that, in principle, a rippling-type descent from
a deflected orbit can have lower maximum heating rates than a gliding
descent, but for practical purposes, there is no significant difference
between the two.

Composite Entry

It may be desirable to combine lifting and nonlifting entry in order
to achieve some advantages of both types. For landing maneuverability it
obviously is advantageous to employ a lifting vehicle. The total heat
absorbed by a lifting vehicle, however, is much higher than for a nonlift-
ing vehicle (fig. 18). The optimum use of aercdynamic 1if't rcduces the
maximum hesting rate only to about one-half that of a nonlifting vehicle
of the same W/A. Nonlifting vehicles can more easily be constructed
with much lighter W/A ratios by employing, for example, a large, light
drag device (for example, a parachute). The larger the device, the smaller
is the heating rate (q ~ 1/ JAl ~ 1-3/2), the smaller the entry Reynolds
numbers (Re ~ (W/CpA)l ~ 171), and the better the possibilities are of
maintaining laminar flow. Nonlifting vehicles with shuttlecock stability
are advantageous also from the viewpoint of minimum control requirements
during entry. Hence, an evident composite type of entry, which combines
some of the desirable features of 1lifting and nonlifting trajectories,
would be to enter first without 1ift but with a small W/CDA provided
by a drag device; then, when the velocity is reduced to a certain value
ap the device is Jettisoned or retracted, leaving a lifting vehicle of
larger W/CDA for the remainder of the descent.

A practical compromise is required in selecting 1Up, because the
drag device should be jettisoned as soon as possible [rom the viewpoint
of achieving maximum maneuvering range, but as late as possible from the
viewpoint of achieving major reductions in heating rate. For the initial
nonlifting portion of descent let the drag-weight parameter be (W/CDA)O
and the Z function be Zg. For the subsequent portion let the ccrre-
sponding quantities be (W/CDA)l and Zi. Since the altitude y and the

!
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angle of descent @ are continuous at the break velocity Uy, we have
two conditions from equations (14) and (17)

(58)

<ZO’ - %>b (59)

for determining the initial conditions Z1; = Zyy, and Zli' = Zlb' for

the second portion of descent. Hence the Z3 function can be determined
approximately from equation (C13) of appendix C by substituting uji = 0y,
2i = Ziy, sin 91 = Py, and cos $® = 1. The maximum heating rate occurs
near the bottom of the first dip after the break, and can be obtained
from equation (C24) in appendix C with the same substitutions. The total
heat absorbed in this dip can be obtained from equation (025).

As an example let us consider the case of a large drag device
((W/CpA)y >> (W/CpA)o) Jjettisoned at a velocity Up during entry from
a decaying orbit. In order to minimize the peak heating after Jettisoning,
as well as minimize the total heat absorbed during the skip, a value
L/D £ 0.7 is selected. Curves showing the resulting values for maximum
heating rate E& after jettisoning, and total heat absorbed Q, during
the first skip, are presented in figure 23 as a function of the break
velocity U,. We see that a large drag device carried down to T, = 0.4,
for example, would have a maximum heating rate about l/h of that for the
same vehicle with no drag device.

It may be noted that the deceleration history for a drag device
Jjettisoned at ﬁh = O.h, for example, is essentially the same as the
acceleration history investigated in the human centrifuge tests of refer-
ence 18. The select individuals for these centrifuge tests did not
blackout (or grayout, or even get dizzy) during the runs. They were able
to perform continually simple dual control operations even when the accel-
eration dropped suddenly from about 8g to about 2g.

Comparison of Several Types of Entry With Hi =1

It is interesting to compare the relative magnitude of aerodynamic
heating for the several types of entry discussed. The dimensionless
maximum heating rate 7Qqp and the dimensionless total heat absorbed @
are used for this comparison. They would be proportional to the actual
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heating rate and the total heat absorbed for vehicles of the same size
and W/CDA. The table which follows summarizes these quantities for
seven different types of entry, all starting with b3 = 1.

= Q
Type of entry L/D Unax for Uy =0.99

Near optimum glide, for 0.7 0.084 3.0
minimum q .. (95 = 0)

Near optimum ripple for T .083 2.9
minimm q . (-9; = 0.5°)

Near optimum glide, for -.5 .78 .93
minimum Q(Qi = 0)

Near optimum first skip .7 15(-93 = 2°) .90
for minimum Q

Nonlifting (95 = 0) 0 .22 1.b

Nonlifting, from deflected 0 27 ‘ .93
orbit with -gj = 2°

Composite, large drag device O for U > 0.k .02 .16

jettisoned at Tp = O.b 0.7 for T < 0.b4

-~

In comparing these values it should be remembered that the actual quanti-
ties of interest for a given W/A are qmax/‘JEB and QJVJEEL and that
nonlifting vehicles are placed at a smzll disadvantage in the table
because they presumably can be designed with somewhat higher values of
Cp than 1lifting vehicles. It is noted that the total heat absorbed in
the case of the skip vehicle, corresponds only to the first skip. Pre-
sumably this is all that should be considered if the vehicle is designed,
as suggested by Ferri (ref. 7), to radiate essentially all of the heat
‘absorbed after each skip.

Atmosphere Braking

During entry of a planet's atmosphere from space at near escape
velocity, possibly severe deceleration and heating problems can occur
during the process of passing through an outer segment of the atmosphere.
The closer a pass is made to a planet surface, the greater is the braking
action, the greater the deceleration, and the greater the rate of aero-
dynamic heating. The 2 functions for four different entry histories of
nonlifting vehicles starting with escape velocity (G4 = 1.4%) have already
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been presented in figure 7. These functions apply to any planet. They
are based on the assumption that after the initial pass no further control
of the vehicle is exercised.

Entry (a) is initiated with 30(0Z)pax = 0.46 during the first pass
(O.h6 g maximum deceleration for earth) and corresponds to a dimensionless
peak heating rate of qﬁax = 0.24 at @ = 1.38. The successive peaks

correspond to Quayx progressively less, while the seventh pass, which
starts from U = 1.08 and completes the entry, corresponds to Ehax = 0.20.
As might be expected this is not far from the value 0.22 corresponding to
orbital decay from U; = 1 with L/D = 0. Since qﬁax is a measure of

the maximum temperature experienced by a radiation-coocled vehicle, it
follows that entry of such a vehicle could be completed on the seventh
pass, without the temperature during any of the atmosphere braking passes
exceeding appreciably that experienced during orbital decay.

Entry (b) in figure 7 is initiated with 30(0Z)pax = 1.65 in the first
pass during which an amount of heat is absorbed corresponding to @ = 1.5.
This heat could be radiated to space before the second pass is made in
which an additional amount 5 = 1.k is absorbed. The third pass starts
from @ = 1.09 and completes the entry with @ = 1.7. These values are
not far from the value @ = 1.4 corresponding tc orbital decay with
L/D = 0. Since § 1is a measure of the total heat absorbed by a heat-
sink vehicle, it follows that such a vehicle could complete an entry on
the third pass without absorbing much more heat during each of the two
atmosphere braking passes than that absorbed during orbital decay.

Entries (c) and (d) in figure 7 are completed in a single pass and
both lose an amount of kinetic energy (1/2)m(1.4 . gr)2 = mgr. They absorb
a quantity of heat corresponding to @ = 2.9 and q = 2.1, respectively,
and experience maximum heating rates corresponding to Eﬁax = 0.58 and
Omax = 0.73, respectively. The total laminar heat absorbed by (d) is
less than (c), even though the maximum heating rate is greater, because
entry (d) corresponds to a closer pass to the planet surface for which
the heat is taken aboard, on the average, at lower altitudes where the
friction coefficients are lower (see eq. (57)).

In addition to the four Z functions just discussed, a number of
Z functions (not presented) have been computed for lifting vehicles
undergoing single atmosphere braking passes in which the entering velocity
is Ui and the exit velocity is Tex. Results are presented in figure 24
for Ui = l.b and in figure 25 for Ui = 1.2. In each figure curves are
presented for the maximum value of horizontal deceleration 30(UZ)pax, the

dimensionless maximum laminar heating rate aﬁax’ and the dimensionless
laminar heat absorbed @ during the single pass. The curves are labeled
as to the L/D values corresponding to earth; they also can be applied
to other planets by recalling that a given value of L/D on Earth is
equivalent to a value (Br)g~1/2 times as much on another planet.
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An interesting feature of these results for single atmosphere brakings
is that for a given loss in kinetic energy (given Uex), they exhibit the
opposite variation with L/D from that previously found for orbital
decay. Thus, an increase in L/D decreases the maximum deceleration for
orbital decay but increases it for atmosphere braking; an increase in
L/D decreases the heating rate Qpax £for orbital decay but increases it
for atmosphere braking; an increase in L/D increases the heat absorbed
a for orbital decay but decreases it for atmosphere braking. From a
methematical viewpoint the reason for this contrasting behavior is that
the gravity minus centrifugal force term (1 - 32)/52 in the basic differ-
ential equation changes algebraic sign at U = 1l. Froma physical view-
point, the effect of L/D on atmosphere braking can be understood by
noting that in order to lose the same amount of kinetic energy, a lifting
vehicle must pass closer to the surface than a nonlifting one. Hence at
the lower altitude the deceleration and rate of heating of the lifting
vehicle are greater, while the [riction coefficients are smaller and hence
the heat absorbed for a given loss in kinetic energy is smaller (see

eq. (57)).

A plot of the maximum surface temperature parameter
TWS€1/4/(W/CDAR)1/8235 a function of the maximum deceleration in Earth

g's is presented in figure 26 for atmosphere braking in various planets
with L/D - 0. These curves are for a single pass starting with uj = 1.h.
Tt is seen that in the earth's atmosphere, for example, the maximum decel-
eration that can be experienced in a single pass and still enable the
vehicle to exit from the atmosphere at some velocity Tex > 1, is about

3.9¢. If the nonlifting vehicle attempts to deceleratc more than this

by passing closer to the surface, then before it exits from the atmosphere,
the velocity is reduced to T = 1 at some point within the atmosphere and
the vehicle completes entry in a single pass experiencing at least 7.2¢g
deceleration in the process. Any pass still closer to the surface only
increases further the maximum deceleration and temperature. When the
maximum deceleration during a single pass jumps discontinuously from 3.58
to T7.2g, the corresponding maximum temperature does not jump because the
maximum temperature already has been experienced before U = 1 was reached.
The limiting maximum deceleration for atmosphere braking in Mars is seen
o be much less (0.7 Barth g), and for Jupiter much more than for Earth.

A companion plot to figure 26, only for the laminar heat absorbed
per unit area in a single pass, 1is oresented in figure 27. These curves
also are for L/D = 0 and Uj = l.k. 1In this case, the heat absorbed
increases discontinucusly when the maximum deceleration increases discon-
tinuously (from 3.5g to T.2g for Earth) because of the additional loss
in kinetic energy. Any pass still closer to the surface increases the
deceleration but decreases the laminar heat absorbed. This decrease
exists because, for a given loss in kinetic energy, any pass taxing on
its heat at lower altitudes will have smaller laminar frietion coeffi-
cients, and hence less total heat absorbed (see eq. (57)).
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CONCLUDING REMARKS

An approximate analytical solution for the motion and aerodynamic
heating of a lifting vehicle entering a planetary atmosphere has been
obtained by disregarding two relatively small terms in the complete motion
equations, and then introducing a mathematical transformation which reduces
the pair of motion equations to a single, ordinary, nonlinear differential
equation. Relatively few solutions to this differentisl equation provide
gquite general results inasmuch as the basic equation is independent of
the physical characteristics of a vehicle, as well as independent of the
sea-level characteristics of an atmosphere. The solutions apply to any
exponential planetary atmosphere.

Certain asymptotic solutions in closed form result from a process of
truncating various combinations of terms from the basic nonlinear differ-
ential equation. The aggregate of terms represents vertical acceleration,
vertical component of drag force, gravity force, centrifugal force, and
aerodynamic 1lift force. This truncation procedure yields an asymptotic
solution for ballistic vehicles entering at relatively steep angles of
descent (which solution is identical to that of Allen and Eggers), an
asymptotic solution for glide vehicles of relatively large lift-drag ratio,
and a solution for skip vehicles.

Comparison of the present solution for an idealized exponential
atmosphere with digital computing-machine results for a standard atmos-
vhere reveals differences the order of about *10 percent. These rela-
tively small differences are due primarily to the variations in atmospheric
temperature with altitude in the standard atmosphere. The present analytic
solution enables corrections readily to be made in order to yield results
applicable to any standard atmosphere, or to an atmosphere which has
variations in temperature with season or with latitude.

Maximum deceleration during entry intc an exponential atmosphere
from a decaying orbit does not depend on the wvehicle weight, shape, or
dimensions; it occurs at a velocity of about 0.4 of orbital velocity,
and is much less for lif't-drag ratios as small as a [ew tenths than for
a lift-drag ratio of zero. Even for nonlifting vehicles, though, the
decelerations are within human tolerance for Earth and Venus, and [ar
below for Mars. Manned entry into Jupiter would require a 1lifting vehicle
in order to avold excessive decelerations.

For vehicles entering from a decaying orbit with aercdynamic 1ift,
the maximum heating rate depends strongly on the vehicle weight, shape,
and dimensions through the parameter W/CDA; maximum heating occurs at a
velocity of about 0.8 of orbital velocity, and, for any given loading
W/A, is minimum for entry at Crp,... This corresponds for common shapes

to optimum L/D ratios petween about C.5 and 1.0. Because of the
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coupling between Cp and L/D for any aerodynamic shape, the use of a
near optimum L/D can reduce the maximum heating rate to no more than
about one-half that for a nonlifting vehicle.

The laminar heating rate varies directly as .{W7CDA; hence, by using
a drag device to increase markedly CpA, such as 2 drag parachute or flare,
much larger reductions in heating rate are possible than through the use
of a trimmed lifting vehicle.

The total heat absorbed during entry from a decaying orbit increases
rapidly with lift-drag ratio for vehicles with positive 1lift. It is a
minimum for lift-drag ratios near about -0.5, but these negative lifts
result in excessive decelerations for manned entry into the earth's
atmosphere; hence the practical optimum for minimizing the total heat
absorbed in orbital-decay entry of a manned vehicle is near a lift-drag
ratio of zero. The total laminar heat absorbed, like the laminar heating

rate, varies directly as .}w? DA.

By inducing entry at a sizable initial angle of descent, the total
heat absorbed for laminar convection can be reduced substantially. The
limit of human tolerance to deceleration stress is closely apprcached for
nonlifting vehicles entering the earth's atmosphere at an initial descent
angle of about 3°, under which conditions the total heat absorbed is 0.6
of that for a decaying orbit having zero initial angle of descent, while
the decelerations and the maximum heating rate are correspondingly
increased. However, if a vehicle with small aerodynamic lift (say,

L/D < 0.7, approximately) enters with a small initial angle, the trajectory
is a rippling descent which can have a slightly lower maximum heating rate
as well as smaller total heat absorbed than for gliding entry from a
decaying orbit.

The total hest absorbed during the first skip of a lifting vehicle
entering at a sizable initial angle of descent, is essentially independent
of both the angle of descent and the velocity of exit from the skip. Tt
is a minimum for entry at Clp,y (Lift-drag ratios near 0.7). For a given
W/CDA, this minimum total heat absorbed during the first skip is roughly
the same as that absorbed during the entry of a nonlifting vehicle enter-
ing at an initial angle of descent of about 2°.

In the process of atmosphere braking for stepwise slowing a space
vehicle from near escape velocity to circular orbital velocity, the
effects of L/D on peak deceleration, on maximum heating rate, and on
total heat absorbed are the oppcsite to the corresponding effects in the
process of orbital-decay entry. For example, an increase in L/D with a
given Cp increases the maximum heating rate in atmosphere braking, but
decreases it in orbital decay. For nonlifting vehicles starting with
escape velocity and employing atmosphere braking, entry to a planet sur-
face can be completed on the third pass without the total heat absorbed
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in any pass exceeding that absorbed for orbital decay, and can be

completed on the seventh pass without the meximum rate of heating exceed-
ing that for orbital decay.

Ames Aeronautical Laboratory

National Adviscry Committee for Aeronautics
Moffett Field, Calif., Apr. 9, 1958
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APPENDIX A
CHECK ON APPROXIMATIONS MADE IN ANALYSIS

The basic approximation (a) of the analysis, as represented by
equation (8), can be expressed fairly simply in terms of the transformed
variable 7 and the angle of descent

lar/r|  [u(ay/at)] ®lsino|

|au/u| — |r(am/at)] JBT Z

Inasmuch as 2/T ~ p_, this shows that approximation (a) cannot be valid
at very high altitudes which are represented by a small neighborhood near
W =71y and Z = 0. In figures 28(a) and 28(p), curves of the ratio
(dr/r)/(du/u) are shown for lifting entry into the earth's atmosphere
from decaying orbits and for nonlifting entry from deflected orbits with
various initial angles ©;- It is evident that in the regions near peak
heating (T = 0.8) and near peak deceleration (T = 0.3 to 0.5) the basic
approximation should introduce errors the order of only 1 percent. As a
vehicle initislly enters the atmosphere, however, the decelerations are
very small and the errors introduced are larger. As a general rule,
approximation (a) is valid for engineering calculations once the air

drag has reduced the velocity by about one-half of one percent (see
appendix B). Approximation (b), that (L/D)|tan o|<< 1 likewise is a
valid one for heat transfer and deceleration calculations of vehicles
with zero or positive 1ift entering from decaying orbits. As figure 28(c)
illustrates, approximation (b) may result in substantial errors near
maximum deceleration for vehicles having negative 1lift, but still results
in reasonably small errors near peak heating of such vehicles.
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APPENDIX B
MATCHING PRESENT SOLUTION TO KEPLERIAN ELLIPSE

Let us assume that a retrorocket force, or some other force, has
deflected an orbiting vehicle into a new Keplerian ellipse which, in the
absence of drag, would intersect the planet surface at some angle Py
A "zeroth order" approximation would be to use this angle in the present
solution as the initial angle @ for the entry. This would be suffi-
ciently accurate for descent angles greater than a few degrees, but for
very small angles of descent a more accurate matching of the present
solution to the Keplerian ellipse may be desirable.

Since the present solution assumes that Idr/r|<<|du/ul whereas the
conservation of angular momentum requires that dr/r = -du/u outside
the atmosphere, it seems reasonable to select the point of matching where
the ratio (dr/r /(du/u) is some value less than unity. Let the descent
angle at the point of matching be @, and the velocity be Tp. Let us
confine our attention to a small region near matching, where the density
is very low, the aerodynamic forces are very small, and the flight path
is only slightly curved. We represent the Z function in this region
by the approximstion Z7 from equation (40) for constant angle of
descent, namely,

Zm = BT Uysin opln(T,/d;)

Since um is only slightly less than Ui we approximate Zn(ﬁm/ul) by
(Wy - Ui)/Ui. Hence from equation (22), it follows that at the matching
point the ratio Ty of terms discarded to terms retained is

- ar/r Upysin @y i

r = = - =

T aufu JBrzm (pr)(T; - Ty
For Barth fr = 900, so that T, =1 at T, = 0.999 1y, T, = 0.2 at
T, = 0.995 Uy, and ¥y = 0.1 at Ty = O.99 T;. Thus, it would be reascn-
able to match the present solution with a Keplerian ellipse at some
velocity in the range, say, Uy = 0.995 W3 to Oy = 0.99 W3. The density
Py at the matching altltude (from the defining equation (1) for 2
and from equation (Bl)) can be determined from

/B o

2(m/CpA)

(1)

Zm = JBr (T) - Ty)(-sin @) (B2)

ﬁ.
Op = 2<CD%> r—; (-sin gg) (B3)
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or, from p, we can determine the altitude Yy, and hence the corre-
sponding value of ¢y from the Keplerian ellipse at this altitude. The
value of @, so determined would be the value of @ which closely
matches the present scolution for the entry motion.

An equivalent way of matching would be to select first arbitrarily
various altitudes Y., Yo, Y35 -+ - and corresponding densities
P15 Pos Pgy » + « » From the Keplerian ellipse the slightly different
angles @, @5, Pgs = - -+ could be determined, and by substitution of
these into equation (B3) in place of @y, the respective values (m/CDA)l,
(m/CDA)z, . . . which would bring about proper matching for a given
value of ¥y (say, 0.1) could be computed. Interpolation would yield
the matching angle ©¢p, and the matching altitude yp for any desired
value of m/CpA.
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APPENDIX C

DEVELOPMENT OF SOME APPROXIMATE SOLUTIONS

The first approximate solution is that for entry of a nonlifting
vehicle along a spiral path which makes a constant angle @ with respect
to the local horizontal direction. For this first special case we desig-
nate the Z function by 21, and see from the right members of equa-
tion (19) that

é% (sin @) = 0 = W27" -~ JBr sin @

or, after one integration,
Z1' = JBr sin § In U + constant (c1)

The integration constant can be evaluated in terms of the initial veloc-
ity Tj and the angle o, to yield after one more integration for entry
from high altitudes (Zi = 0),

Z a CpAp; -By

—t ln:—=-—-2-A%e (c2)
u\Br sin © Ui 2mp sin O

from which it follows that the dimensionless laminar heating rate

_5/2  1i/2 .
dr =u Z1 has a maximum value

T = 0.247 ﬁis(ﬁr)l/4~/sin(-c'p@') (c3)

and the dimensionless total heat absorbed from UW = T; to W= 0 is
evaluated by noting that the integral of equation (39b) is proportional

to T(1/2) = Jn/2.
T\ N
(@) = (CO; q,> Sl (ch)
(gr) " Nsin(-9)

This solution for Zy corresponds to setting the left members of
equation (21) to zero. 1In order that the right members of equation (2la)
also vanish, we see from equation (c2) that this special sclution can be
realized in two ways: (1) by maintaining a true spiral path through pro-
gramming the 1ift with velocity in the very special way such that at all
points

(1 - T%)cos P
T2(Br)sin § In(T/ui)

L
S = (c5)
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or (2) by entering with a nonlifting vehicle along such a steep path that
the gravity forces minus the centrifugal forces are negligible compared
to the vertical component of drag force (this yields essentially a
straight-line trajectory). Case (1) of spiral trajectories with pro-
grammed 1ift, is not easily realized in practice, but case (2) represents
exactly the physical situation considered by Allen and Eggers (ref. 1)
for their solution to the problem of ballistic entry. Hence, it should
not be surprising that equation (c2) is identical to their solution.

This solution for nonlifting vehicles at constant ¢ does not depart
significantly from the complete soluticns near peak heating (ﬁ/ﬁi = 0.8)
except for initial descent angles less than a few degrees, and near maxi-
mum deceleration gﬁ/ﬁi Z 0.4 to 0.6) except for initial descent angles
less than about 5-.

As a second special case, we consider smoothly gliding, hypersonic
flight (T near 1) with a large L/D and at sufficiently small descent
angles that cos ¢ £ 1 and sin @ = ¢<<L/D. Under these conditions the
left-hand terms of equation (2la) involving the normal deceleration and
the vertical component of drag force can be disregarded. The right mem-
bers yield for the special function Zr1 representing balance between
gravity, centrifugal, and 1ift forces,

1 - T
~ uJBr (L/D)

The flight-path angle 1s obtained from eguation (17) by differentiating
equation (C6)

Z11 (cé)

2

7 BraAw/p)

(c7)
This particular solution is the same as the solution for gliding flight
orginally given by SHnger (refs. 2 and 3) for which the aerodynamic heat-
ing problems have been studied by Eggers, Allen, and Neice (ref. k).

This special solution is quite good for L/D ratios greater than about 1
(for Earth) and hence is adequate for most glide vehicle analysis. It
cannot be applied, however, to entries with other than zero initial angle,
inasmuch as extremely small initial angles of descent will result in a
skipping trajectory for which the vertical acceleration term is not small
compared to the 1lift force. For this gliding solution Z11 the maximm

- _5/2_1/2 _
heating rate proportional to Qqpax = (T z Jmax occurs at U = N2/3

with

(T, = : (c8)

343 (er) " *JT/D

the dimensionless function proporticnal to the total heat absorbed is
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/ T
QII - (BI‘ 1 41- dU. (ﬁI‘)
0

(c9
and the range function is
pstr L flgaw 1 1
LI _z —‘1—32=—1n——T§ (c10)
r DJ, 1-1 2D 1-1uj

as obtained in reference 4.

As a third special case, we consider entry with 1lift along a trajec-
tory wherein the gravity minus centrifugal force is relatively small (see
(21a)). A skip vehicle, for example, would fall in this category.

In this case the flight path is determined primarily by a balance between
the normal acceleration term UZ", the 1lift term fBr(L/D)cos3p, and the
vertical drag component. The trajectory is, by assumption, influenced
only secondarily by the gravity minus centrifugal force term

(1 - ©%)cos%p/(TZ); hence we may render the basic differential equation
linear by supposing that Z in the denominator of this nonlinear term
be approximated a priori by some Z function obtained either by neglect-
ing this nonlinear term or obtained in some other way such as by expand-
ing 7 about Ti. By writing cos @ as the "average" value of cos @
for the flight path according to the theorem of the mean, we have, after
one quadrature,

&z 2z cos4$l/p - du - c053¢~/Br = 1in
u o 027

du
i

cli<l

4+ constant  (Cl11)
1

at U = Tj; equation (17) shows that (dZ/d¥) - (Z/4) = JBr sin ¢; hence
the descent angle is given by

Ty g2 _ L by
Br (sin - sin @) = cost] — da - cos39p =.Br In —
© CPl 2, QPD
T4 u<z U4

1

(c12)

and the Z function is obtained by solving the first-order differential
equation (C11), noting that 1/@ is an integrating factor,

7 _ MYan U (1-72)an T cos3p T
:—1+cos4q>f -:f L————-)——+ Br sin @4In :—-——2—-(8 % Br 1n° :_E-
R ve) u

i VialA uy bl

o] [l |

(c13)
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By disregarding the gravity minus centrifugal force integral, we obtain
a special function ZyIT representing balance between normal acceleration,
vertical drag component, and 1ift force,

Z1IT  Zi T cos3p L> S
—== = =+ in @;ln — - - — L
= = BT [51n P;1ln = 5 3 1n = (c1k)
and
sin @ = sin @i - cos>® <%>ln = (c15)
uji

These last two equations for L/D = 0 reduce to equation (C2), If
desired, we could substitute ZIII (or some other initial estimate of Z)
into the denominator of the integrand in eguation (c13), thus obtaining
a correction term for the gravity minus centrifugal force term. The suc-
cess of such a method would depend upon the accuracy and simplicity of
the initial estimate.

To illustrate one application of the special solution ZITr given
by equation (C1lk), we consider the first skip only of a lifting vehicle
entering the atmosphere at a small angle @; (cos @i = 1) and at orbital
velocity (ﬁi = 1). The first skip is generally the most severe from the

heat-transfer viewpoint. We have for Zj = 0,

21II _ [pr <q)iln T- 2 1n2ﬁ> (C16)
u 2D

which can be substituted into the integrand of equation (C13) to yield an
expression for the gravity minus centrifugal force term. We notice first,
though, that by definition (ZIII/E) ~ py, Treturns to its small initial
value Zi whenever the vehicle returns to the initial altitude Poos * At
the end of the first skip the velocity is reduced to some value ﬁIIIe
such that

2094

n(Trirle = o7y

in accordance with the results of reference L, This is the velocity at
the end of the dip. Since we are considering small angles only,
-2@1/(L/D) =1 - EIIIe’ and we may substitute In W = U - 1 in equa-
tion (C16) for the purpose of evaluating the double integral of equa-
tion (C13) representing the gravity minus centrifugal forces. This
yields a new Z function

z - §)® z

v (L-%) _, 2 (c17)
a LBr (-9;) T

Zi +A/BT [cpiZn T - <§L§ + l*B]I_TPi)nZE}

11
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The velocity at the end of the dip is given by

] 29y
©(L/D) + (1/2Bre;)

(c18)

in ﬁe

Since Br = 900 for Earth, the correction term 1/(4Brp;) can often be
disregarded. The path angle is obtained from equation (c15)

w=¢i-Gﬁnﬁ (c19)

so we see that
1

1- 2(L/D)Bro; (c20)
T
L 2(L/D)Bro;

If 2(L/D)ﬁr¢i >> 1 these equations reduce to results previously obtained
by Eggers, Allen, and Neice (ref. 4). 1In particular, for relatively
large values of (L/D)@i, the angle leaving the dip is equal but opposite
to the initial angle ¢ of entry, as noted in reference L, After a
skip, a period of weightlessness follows at an essentially constant
velocity Ue under conditions where the vertical acceleration

(av/at) = g - (Te?/r) is constant; hence the duration of weightlessness
At = 2ve/(dv/dt) is

L., —
Pe = @1 - lBUe = "0f

2Te (e )

At = 7) (c21)

g(l - Te

After this period, a second entry occurs at nearly the same angle as the
first entry, only at the reduced velocity TUe. The maximum laminar-
heating rate occurs near, but not at the bottom of the dip (p = 0) at
which point the velocity Um is given by 1In Uy = ¢i/(L/D). By substi-
tuting this into equation (C16) the approximate maximum laminar heating
rate is then represented by

394

s/2_ 1/2 (Br)1/4eL/D (-o;) (c22)

J2L/D

dm = (ﬁm Zy )

(3r)"* (-9;)

Jer/p

11

for -p; < %

An interesting result concerns the total heat absorbed in a single
skip starting from satellite velocity (@i = 1). The total heat absorbed
is obtained from equation (39) together with
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e __ e * T dm
uj‘;e ﬁd (Br)l/4mj‘;e \/mﬁ(% - n a>

~

By employing the same approximation 1In U

evaluated.
J2 P

e -

-1 + U the integral can be

This is essentially independent of @i, since @i/(L/D) for many skip
vehicles would be small.

Q= ———Jﬁééf——— for -p; << L
(Br)” NL/D

D
Although the maximum heating rate in a skip is proportional to the initial
angle of descent @i, the total heat absorbed is essentially independent
of both the initial angle ¢ and the exit velocity Te of the skip.
Since Q@ ~ @/JEB, we see that Q ~ l/JEE, which means that the least heat
is absorbed by skipping at Crp,.- For inclined flat surfaces in hyper-

sonic flow, simple Newtonian theory yields CLpayx = O.77 at an angle of
attack of 55°, at which angle L/D = 0.7l. Hence

@ pip g = ~2 x/(pr) " SO TL = 0.96

This value is compared elsewhere in the DISCUSSION with corresponding
values of @ for other types of entry.

If a skip vehicle does not enter initially at orbital velocity, but
at some different value Ui, then the corresponding equations with gravity
and centrifugal forces neglected indicate the bottom of the dip to be at
a velocity Ty given by n(Ty/ui) = ¢1/(L/D). At this point the heating
rate is represented by

304
1/4__ 3 L/D (‘(Pl)

Qn = (BI‘) u; € m

The exit of the skip occurs at a Velocity. Ue given by
in(Te/7;) = 291/ (L/D)
The dimensionless total heat abscrbed is approximately

_2
Qz _;igjgiL___ (ce5)

(pr)*"*JL/D

(cak)
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APPENDIX D
INTEGRATION OF BASIC NONLINEAR EQUATION

Many numerical methods could be used to compute stepwise a Z func-
tion from a nonlinear equation such as

—n ' Z l-ﬁa 4 L 3
SVAM A R = —fﬁi—— cos4p - JBr o cos~ P (Dla)

where Z' - % =4JBr sin . A study has not been made of the best way to

u
integrate such an equation, or of whether or not an alternate form of this

equation, such as

dﬁ > (.2 - 1) cos 4 - ﬁa‘f— cos3p (D1b)

where F = Z/ﬁ and uF' =~f§; sin ¢, may be preferable for purposes of
integration. The particular method employed, while probably not extremely
accurate, is simple in the sense that it involves merely the repetition

of a large number of identical operations. Suppose we know at some ini-
tial point Up the values of Zp and Zp'. Then from the differential
equation we have for the second derivative (with cos P set equal to

unity for purposes of simplicity in illustrating the method),

no_ 1 ' Z_n 1 - un
R ol C N VBr (2)

and for the third derivative

Zn" = L (én' - §i> _1- Tn® Zn' _ 1 + Tn® (D3)

Hence a Taylor expansion for Zp;; and Zp,,' at the next point Upyy
yields

— %) -—\3
Znt1 = Zn + Zp'MNa 4+ Zp" .(A;_) + Zp™ (A161)

(r7)®
2

il

Zn' + Zn"MNu o+ Zp'™

Znyr’
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while the above equations (D2) and (D3) yield Zn+1" and Zp4y"' when n
is replaced by n+1 in the formulas. Thus the process can be continued.
For most cases the 27 functions are fairly smooth, and the inclusion

of 7" 1is unnecessary in the above procedure if sufficiently small AX
are used. For the present calculations Z'"' was omitted; A1 = 0.001 was
employed for Ui = 1, and AT = 0.002 for Uj = 1.4 and @y = 1.2. For skip
vehicles, the Z function can vary quite rapidly and the inclusion

of Z'' presumably would enable larger increments M2 to be used.

This particular procedure requires a knowledge of nonzero values
Zo and Zo' at some initial point UTp. Hence the first step is taken

analytically., For decaying orbits an analytical representation in the
vicinity of T = 1, where (1 - T)/a =21l - 1T, is

2@ (1 - EO)S/2 (DL)

J6 (1 -T)tE (D5)

Zo

1]

Zo'

since these yield Zo" = 2(1 - To)/Zo and correspond to values of both

Zo' and Zo/To small compared to Zo" (see eq. (D1)). Equations (Dh)

and (DS) would apply to a lifting vehicle provided (1 - Ug) is selected
-1/2

small encugh so that N BT % << (1 - Tp) / . 1If the L/D ratio is

large, we can use the Zgp function to obtain

1 - T8
Ty = o — (D6)
© JBr (L/D)uo
1 + EOZ

i JBr (L/D)o®

For re-entry with an initial angle ¢4 at initial velocity wuqy we can
use the Zgyyy function for the first step,

Zo' (D7)

e ) 3 -
o = WPr o [Sin o1n &= - =5t <E> 1n2 -1} (p8)
ui 2 D uj
. Zo
Zo' = JBr sin Py + = (D9)
o
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——————— Trajectory

Portion of trajectory over
which analysis is applicable
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Figure 3.- Sketches of typical entry trajectcries and pcrticns to which
present analysis applies.
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